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PREFACE

ASP, The Automatic Synthesis Program, is a digital-computer program.
It is written in FAP and compatible with most IBM 7090-709% installations.

ASP is an executive program enabling the user to sequence arbitrarily
some thirty subroutines. ASP is intended for a person who has some back-
ground in modern system theory, especially linear algebra. Such a user can
obtain, with the help of ASP, easily and efficiently the numerical solution
of most (perhaps all) problems in system theory which involve linear mathe-
matics. Time-varying linear systems are included; in fact they will con-
stitute the most important practical applications. Among others, the follow-
ing subroutines are included: input-output calculations, the operations of
matrix algebra, computation of the exponential of a matrix, the solution of

both discrete and continuous-time riccati equations.

The subroutines in ASP are sufficient to solve the most general pro-
blem of extremization of quadratic functionals of the state of a linear
dynamical system. This includes, in particular, the synthesis of the Kalman-
filter gains and of the optimal feedback gains for minimization of 2 quadratic
rerformance index, possibly with hard terminal constraints. Use of the pro-
gram 1s by no means restricted to these two problems, however, as is evident

from the table of contents.

In short, ASP is a very flexible program which can be conveniently
and quickly programmed to give the solution to a variety of problems. Input
consists of a description of the equations to be solved as well as numbers
specifying the system matrices. The programming has been made as "macroscopic"
as possible; many special features have been built into the subroutines for
the convenience of the user and to lessen numerical difficulties. We hope
that the availability of a convenient and reliable program such as this will
contribute to greater awareness of the powers of modern system theory, parti-

cularly in the areas of control, statistical filtering, and optimization.
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After this very terse description, let us outline what ASP is not.
It is not an unusually accurate program nor is it a very fast program. Its
limitations arise wmainly from the fact that integration is done by the
matrix exponential (hence all n2 couplings are considered whether or not
they exist) and because the matrix exponential computation involves scaling
problems that do not arise in ordinary numerical integratiop schemes. We
try to compensate for this by automatic scaling. A major cause of time
wastage is the compilation of the instruction data every time the deck goes
on the machine. That is, the ASP executive routine is not recompiled, but the
list of ASP instructions to the executive routine are translated to a system
of calling sequences for the ASP subroutines. A binary program could be
punched easily from the machine contents, but we have never done enough

repetitive work to Jjustify it.
Given these limitations, what uses do we see for ASP?

One of the chief benefits will be educational. This manuval contains
text-book examples and some more involved practical problems, These illus-
trate not only the use of ASP but also the steps required to solve these
various problems. They provide concrete cases, with real numbers, for the

novice in optimal system theory.

ASP is expected to be very useful as an analytic design tool where
extreme precision is not required. In addition to the problems discussed
in this report, the program has been used satisfactorily on several reentry
problems, lunar landing problems, airplane control, and control of large

flexible boosters.

Some remarks may be useful here on optimal control as a practical
tool., Many engineers have questioned the relevancy of linear optimal control
to practical problems because the performance index has no simple relation to
the criteria which must be imposed (bounded state variables or bounded control

variables, for instance), There are two important considerations here:

(i) It has been our experience that it is usually easy to alter the
performance index by experimentation to achieve the desired shape of the
trajectory. That is, after a few trials we can usually find an optimal (in
the modern sense) control which will appear satisfactory also to the engineer
who works with older style criteria,

iv




‘ (ii) The computation of exact nonlinear control laws is at
present prohibitively expensive. It is far more sensible to iterate a
general-purpose linear optimization program by trial and error than o
write a separate, exact, nonlinear optimization program for each case.
This will remain true even when and if nonlinear optimization methods
become more generally available. (Note that today (1965) only a2 Few
special nonlinear optimization procedures have been studied from the

point of view of numerical analysis.)

As for the availability of the ASP program, it can be obtained
on request from the Theoretical Guidance and Control Branch, Ames
Research Center, NASA, Moffett Field, California. Further details re-

garding tapes, listings, and check cases can be arranged.

We are indebted to many persons for their efforts, but we
particularly wish to thank Mr. Elwood C. Stewart of Ames Research
Center for his interest and assistance and Miss Elsie Cerutti of

RIAS for her excellent programming work.

This research was supported by National Aeronautics and Space
Administration Contract NAS2-110T7 administered by the Ames Research
Center, Moffett Field, California.
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INTRODUCTION

This report may be divided into three parts: Chapter I, Chapters
II-VIII, and Chapters IX-XVIII.

Chapter I describes the basic mechanics of ASP, its input format,
vocabulary, error returns, and idiosyncrasies, For the person who under-
stands his problem, knows what mathematical steps are required in its
solution, only Chapter I is needed. In the dictionary, the subroutines
are described by specifying the output and how each of the arguments is
used. Then referring to the coding sheets at the end of Chapter I, we
can determine in which columns the argument names appear. For instance,
in the dictionary description of EAT, a matrix PH is output. When
using the EAT routine we may call this output by any other two-character
symbol, but that symbol must appear in the columns where PH appears in
the coding sheets.

Chapters II through VIII describe in detail the more important
subroutines available. Generally some theoretical background will be
given deriving from basic principles the application of the particular
routine to linear systems theory. In addition, the method of computa-
tion will be explained with remarks about numerical problems and several
check problems given, These chapters will be useful not so much for
helping in the actual use of the program but as somewhat more than an
introduction to the theory, particularly as it is used in computation.
For instance, Chapter VIII provides an ad hoc derivation of the optimal

control law for a discretized system with quadratic performance index.



Chapters IX through XVIII are examples in some depth of computa-
tion and analysis. The selection of problems solved is far from compre-
hensive, yet the basic problems of using the subroutines are well covered.
The specific ASP programs used appear in the figures for each chapter and
when read, should provide a working knowledge of the ASP language. It
is our hope that these problem chapters will be an introduction to ASP

and a tutorial in linear systems theory from a computational point of

view.




CHAPTER T

ASP - THE AUTOMATIC SYNTHESIS PROGRAM

1. History. The nature of our work is such that a basic set of matrix
subroutines which can be sequenced in a variety of ways would solve many
problems. In the original formulation of a program, several approaches
were considered. Since there were available at the time many of the
necessary subroutines, a programmer could write new connective code very
easily for each separate problem in the 709-7094 SOS system. This method
has the advantage of immediate availability with very little program veri-
fication since the component programs were already checked out. With
increased outside interest in the program, it was discovered that many

of the IBM computer installations (e.g., Wright Field) will not accept

SOS programs. Consideration was also being given to writing a Fortran
program with input which would determine the sub-programs to be utilized.

A single program with code accepting decision points to determine flow would
be easy to write but the data becomes extremely unwieldy when the number of

permutations of routines is large; an

(¢}

ven greater difficulty lay in antici-
pating every type of problem which would be solved. We decided to adopt a
scheme which may be regarded roughly as a matrix formula translator enabling
us to write macro-instructions directly in terms of the needed matrix opera-
tions. Since so much of the programming had already been done in the 508
system, we decided to keep the SOS input-output unit and assemble it as the
ASP I-¢ package. Again we ran into difficulty with another computer installa-
tion which did not have tape units attached directly to the 7094. Therefore
ASP has evolved into a FAP coded-formula translator with Fortran II input-
output, which may be loaded with the main ASP deck or called off the system
tape.



2. I-f Requirement. Before going into more detail about the main program,

several features concerning input-output should be pointed out. Contact is
made with the I-ff routines through the following entry points: (TSB), (STB),
(TsH), (STH), (SPH), (BST), (RSW), (RIR), (WIR), (FIL), (RIN) and EXIT. Tt
appears possible that with a knowledge of the function of each routine and
with more detail on calling sequences and format, one could run this deck

at any IBM installation with a 32 K IBM 7090-7094 and any tape units re-
quired by the I-ff. The format specifications are standard Fortran II as
described in Form C28-6066-5. Use is made of the A, H, E, F, and I mode,
multiline blocks of print of 120 characters specified by a slash, and colump
skip specified by an X. The logical tape number for input is 5, for output
6. The only nonstandard feature is that the format specification is stored
in increasing storage locations. The code which indicates this type of

format statement is a 1 in the decrement of the calling sequence.

3. Description of ASP. ASP is composed of two parts, an executive routine,

whose function is to read, list, and store alphameric data and a group of
independent subroutines which are classified by use as mathematical - those
having to do with numerical analysis; data handling - those involved in
making storage available, moving information in core or between core and
tape; output - those which write alphameric or decimal information; input -
those which bring in decimal information; and logical - those which provide
a means of altering the progress of the program.

The executive program described diagramatically in Figure 4 expects
as a first card a date card of which there is one and only one in each data
deck. Then it begins reading until it finds a card with the operation
BEGIN in Columns T-11l, which signals the executive program that alphameric
information follows. This alphameric information is separated into 12, 6
character words, the first of which is a label or heading name, the second
word specifies the operation and words 3 through 12 contain the operands.

Operands may be referred to by anytwo alphameric characters; followed by




either a comma or blank character; their position following the name of
the operation specifies the role each plays in the operation. Resultant
matrix storage locations are created in the order in which they appear from

left to right. For instance when

ADD A, B, G,

is first executed, if conformability requirements are satisfled and AI, RK,
and C have not been previously defined, they will appear in core in that
order. If one of the matrices AI, RK and C have been previously defined
and if the size of the new matrix is the same as the size of the core matrix
then the resultants will be stored in the defined region.

The alphameric information has & fixed field format. If a matrix
identifier is -A (- represents a blank) then any reference to A must be
written -A. A~ will be defined as a different matrix. The same rule des-

cribes the label. The format then can be described in a very general way

as follows:
Columns
16 labels (may be blank)
T=-11 operation
13-1k4 operand 1 or blank |
15 blank or comma
16-17 operand 2 or blank
18 blank or comma
. ete.

Specfically every instruction has an operation in Column T7-1ll. Whether
operand 1 1s in Column 13-14 depends on the instruction. See Figs. 1-3 for
the specific location of the matrix identifiers.



In addition to the fixed format restriction there is a limit of .
120 for the number of matrix identifiers. If this limit is exceeded error

statement number 5 is printed.

Certainly every operation does not require 10 words for the operands.
Therefore a test is made to eliminate anything beyond the first completely
blank word. This implies certain restrictions on the use of double-blank
as an identifier. Such a use is not recommended. This alphameric data from
the second word to the first blank word is stored downward unchanged in a
reserved block behind the program. Two words precede the stored data, a
machine instruction which acts as a transfer to the 30 subprograms and a
control word with the number of operands for this instruesion. This is done
for every alphameric data card except the BEGIN. Observe then, that the
data is stored to look like a series of call statements with their respec-
tive arguments, thereby acting as a stored program. One is able to change
the direct flow through the stored program by use of the IF instruction
which in turn uses the label that was in Columns 1-6 of an alphameric data
card. If word 1 is not blank it is stored in a vector (dimension 40) of
labels along with the address of the core location which contains the transfer

for that operation.

The END instruction signals the end of the instruction data; and a
transfer is made to the first stored data point. Since the input tape is
now positioned after the END record any IOAD given in the stored program
will cause the input tape to be read for decimal information from that point.
To summarize, the data deck is in the following order: 1) Date, 2) BEGIN,
3) any of the 30 numeric, input or output statements, 4) END, 5) decimal
data for the LOAD instructions or instruction in the order that the LOAD will
be executed. For information about the decimal data see IOAD in the dictionary
which follows.

Every subprogram has two entry points. The first entry point uses
the symbolic material, which is stored following the transfer instruction,
to determine the location of the first element of the operands. A number is

stored, in place of the alphameric symbol, which defines the position of




that matrix in the ordered matrix storage area. This part of the subprogram
also defines a matrix region for the resultant and examines the operations
for conformability. If the region has already been defined, the size of the
defined region is compared with the size of the resultant matrix. TIf the
sizes are not equal error statement number 8 is printed and execution is
deleted. An error statement is also written if the matrices are not con-
formable. Finally "the transfer to entry point 1" instruction is replaced
by a "transfer to entry point 2". The second part of the subprogram per-
forms the numerical calculation. It is this part of the subprogram which

is repeated if the operation 1s in the range of an executed IF instruction.
Care must be exercised in storing results in previously defined areas. The
row and column dimensions of the one may not be the same as the row and
column dimensions of the other; thus allowing undetected nonconformable
operations in any of the repeated operations since the confomability check

is made in the first part of the subprogram.

At present one can communicate with ASP by the following vocabulary

Mathematical

1. EAT 9. ADD

2. ETPHI 10. SUBT
3 TRNSI 1. MULT
4. RICAT 12, TRANP
5. PSEUO 13. NORM
6. SAMPL 14, TRACE
7. INVRS 15. PIZERK
8. DECOM 6. JUXTC

7. JUXTR



Data Handling Qutput

18. SAVE 2k, PRINT
1I9. EQUAT 25. RINT
20 BLOT 26. WRITE
2. REW 27. PUNCH
2. WEF
23. BSR

Input

28, LOAD
29. BRING

logical
30. IF
31. BEGIN
32. END
DICTIONARY
T.F T ¢p
l. EAT. This program computes PH = e and B= [fe "dt; PH and

B will be printed if PRI NT is punched in columns B5 to 29, F can
be 30 x 30,

2. ETPHI. This program computes PH = eT'F; PH will be printed if

PRINT is punched in columns 25 t0 29, F can be 30 x 30.

ETPHI has the option that if a matrix symbol is contained in column
22 to 24 the value of t which will be used will not be the input t but
t 10 % . .
a value " s -ﬂ-ﬂ[ The value % Will be stored in core, identified by

the symbof in 22, 23. 2




5 TR NS I. This program computes y(t) and wu(t) according to the
difference equations

x(t +7,) = Px(t) + Gu(t)

u(t) = R - Kx(to +1i7,), frogt -t < (i+ l)'r2

where

y(t) = Hx(t)

where x(to) =X and 1 1s a positive integer.

Rather than describe the output in detail we have included a sample
TRNS I output as Fig. 19.

Print of t, the first two components of R, ¥, and the first
three components of u is done at intervals of Tl. The control computa-

tion is done at intervals of T2 with 12 some positive integral multiple
of Tl and these steps are marked by an asterisk. Because there is room

for only 7 components of y, the H matrix should have less than 8 rows.
The problem terminates when the final time tf is reached.

The matrix T has elements Tos Ty to, and tf in that order.

4. R IC AT. This program computes P(t) and X(t) by the difference
equation

P(t + 7)

-1
lo,, + 6,,P(t)]l6 ; + 61,P(t)]

K(t) = CP(t)

with P(0) =2 and



= PH.

In &ddition to the given equation there is an option in which if
there is a matrix name X in Columns 28-30 the computation for P(1) and
only P(1) will be

-1
P(1) = [6,)X + 6,,P(0) 16, X + 61,P(0) ]
. . -1 .
If this option is used, [ellx + 912P(°)][911X + elgP(O)] is
automatically printed.

This program also computes

Z|Pii(t +1) - Pii(t)|

AL =
zlpii(t FT)]

Computation continues until t + T 1is equal to or greater than TF’ an

input number, or until AL is less than €, an input number. Printing is
controlled as follows. controls the intermediate printing of K, p2

controls final K and P

p
1
controls the intermediate printing of P,

print. If

Pz

0 there is no intermediate print
pl or p2 is
M +there is a print every Mth iteration
if

0 there is no final K and P print

1 there is a final X and P print.

- 10 -




. PC is a matrix with fixed point elements Pys Py p5, and B
(in that order). D is a matrix with elements €, T and Tp-

Where B 1is O if the Riccati equation is known to be linear and

nonzero otherwise.

5. PSEUO. This program computes the pseudo-inverse of P, storing it
in PI and the rank r of P, storing it in RK. The final pivotal ele-~

ment and

. ﬂ@“B - I)B| J[(B”B - I)B”ﬂ r
p = min( + )
5] T

(see Chapter V and dictionary entry 15) are also available as the second and
third elements of the 3 element matrix RK. Pseuo will use the pizer in the
machine and the p computation to determine the rank of P, if a 1 is
punched in Column 18; otherwise the pseudo inverse of P will be computed
with a pizer as read in by the PIZER instruction and no iteration as deter-
mined by p. Computation therefore will cease when rank is maximal or any
diagonal element is less than the product of pizer and the maximum diagonal
element. If the matrix P 1is nonnegative definite symmetric, a + sign
should be punched in Column 16; this will save time and improve accuracy,
since it will drop the symmetrizing steps. PI will be printed if PRINT

is punched in Columns 25-29 and p as a function of rank, will follow PI
if a 1 appeared in Column 18.

6. S AMP L. This program computes P(to + Nt) and K(to + Nt) by the

difference equations

P(t + 1) = F[P(t) - P(t)a'(Gp(t)G* + R)ﬁGP(T) JFt +q

K(t) = FP(t)G'[GP(t)G? +R]it

with P(to) = PO.

- 11 -



The pseudo-inverse in these equations is computed using the value
of pizer which has been stored by the PIZER instruction and no p itera-

tion as described above.

Computation continues until the number of steps exceeds N, an
input number, or until AL is less than €, an input number. Printing
is controlled as follows; Py controls the intermediate printing of K,
N controls the intermediate printing of P, P5 controls the final KX
and P print. If

0 there is no intermediate print
p, or p, is
M +there 'is a print every Mth iteration

0 +there is no final print
if p5 is
1 there is a final print.

D is a matrix with first element € and second element 7.

PC is a matrix with fixed point elements Pys Pys p3, and N (1n
that order).

7. I NVRS. The program finds Y = P-l, provided P is not a scalar.
To invert scalars, P S E U O must be used. (See p. 21, Error 1 when det P = 0.

8. DEC O M. For any nonnegative definite symmetric, n-dimensional matrix
B of rank (in the sense of PS E U 0) r, this program returns matrices
T, Er and E such that T is nonsingular, E is an n-dimensional matrix
as defined by E = TBT' and Er is some r columns of the n-dimigsional
identity matrix where ErE; = TBT'. 1In addition the matrix S =T , the

permutation matrix P such that




] I. 0
r
PEE! P! = 4 and a 3 X1 matrix RK with r, final pivotal
0 0
n-rJ

element, and p (in that order)are also provided. If a 1 is punched in
column 18, the machine pizer will be used and the rank of B will be
determined by the computation p = min [|[S EE' S' - B"par. If column 18
is blank, computetion will cease when rank is maximal or any diagonal ele=-

meint is less than the product of pizer and the maximum diagonal element.

Some care must be exercised in using DECOM in a loop since Er may
change its dimensions. This of itself is not a problem since Er is stored
in a sufficiently large area, n X n, but if Er is transposed and the
dimension of E; increases as iterations continue, then E; will destroy
the storage following itself. This usually is not a serious restriction on

programming.

9. ADD. This program computes C = A + B. These matrices can be 30 x 30.

10. S UBT. This program computes C = A - B. These matrices can be

30 x 30.

11. MULT. This program computes C = AB if 1) A and B are conform-
able or 2) A is a scalar. The output of this program can have 900 ele-

ments.
12, TR AN P, This program computes the transpose B = A'.

13. N O R M. This program computes NA = {Max = |a
1
input to this routine can be a 30 X 30 matrix.

ij|, ng s laijl}. The

n

14, TR AC E. This program computes TB = trace B = X bii'
i=1

15. PI ZE R will store two constants Pl and P2 which are used in
the PSEUO, DECOM, and S AMP L instructions. The program values
of the two constants are lO-2 and 1 unless the P I Z E R instruction

stores other values. For a complete description of their use see Chapters V and VII.

-13 -



16. JUX T C. This program takes the m by n matrix A, the m by

p matrix B, and forms the m by (ntp) matrix

c=[A Bl.

JUXTC can not be used in a loop if the output dimensions are changing.

17. JUX T R. This progrem takes the m x n matrix A, the pXn
matrix B, and forms the (m+p) Dby n matrix

JUXTR can not be used in a loop if the output dimensions are chang-
ing.

18. S AV E. This routine will write the given matrices on any of 9 units
or channels as defined by the IﬁU tables of the installation monitor system.
In Column 18 is punched a number 1 through 9 which is used as an entry to a
table cémmon to all the tape instruction. This table will contain a logical
tape number which in turn is used by the Fortran I¢U to select a tape channel
and unit. The logical tape number as stored in the present version of ASP

corresponds to the B channel units 1 through 9. The table is as follows:

- 14 -




Column 18 Logical number Actual channel
in FORTRAN II If

1 8 B-1
2 2 B-2
3 3 B-3
L 7 B-4
5 10 B-5
6 12 B-6
7 14 B-T
8 16 B-8
S 18 B-9

One SAVE instruction can be used to store as many as 9 matrices, giving each
a tape name which can be different from the core name. In the sample,

A, B, and C are being saved on tape 5 and are being called D, E, and F
respectively. Operation is as follows: The unit reads the tape until a
record with the code word END is encountered, backspaces over that record,
writes the matrices, writes a record with the code END and then backspaces
over this last record. Some initialization therefore is necessary before
the first occurrence of the SAVE instruction. This initilization can be

REW, WEF, REW.

19. EQ U AT. This instruction replaces completely except for identifica-
tion the matrix in the second half of the word with the matrix in the first
half, if the sizes are equal. In the example F1 will be replaced by F2,
F3, by Fh, If Fl is undefined at the time of the instruction, F2 will
be stored in a second area and given the identification Fl. F2 under any
situation will still be defined in storage. This instruction will handle

as many as 10 pairs of matrices.

20, B L OT. This instruction erases the matrix F and every matrix stored
after ¥, thus making the storage area available for reuse. This instruction
cannot be used in a loop and will result in error statement 12 if an attempt

is made to execute a given B L O T instruction a second time.

-15 -



2l RE W. This instruction will rewind (to tape beginning) any one of
nine tapes as designated by the table shown in the S AV E instruction
(in the example, tape 5). The tape number is punched in Colwmn 18.

22. WE F. This instruction will write a record with the code word E N D
on any one of nine tapes as designated by the table shown inthe S AV E
instruction (in the example, tape 5). The tape number is punched in
Column 18.

25, BS R. This instruction will backspace 1 to 9 records (in the example
%) on any one of 9 tapes as designated by the table shown in the S AV E
instruction (in the example tape 5). The number of records is punched in
Column 15, the tape number in Column 18.

24, PRI NT. This instruction will print up to ten matrices in one
execution, printing each matrix, one row per line in a five-digit format,
with its row size, column size, exponent, and & three character title.

In the example, for instance, the matrix called CF in core will be printed
with title C L F. If several matrices can be contained completely on a
page, PRI NT will not eject to a new page for each matrix.

In addition to the above, there is an option in which every matrix
title following the first on the list will be printed in functional nota-
tion using the first element of the first matrix on the list as the argu-
ment. To use this option put the argument name in the first word as usual
(Columns 13, 14) but leave the three character title region blank (Columns
16, 17, 18).

25 RI NT. This instruction will print up to ten matrices in one exe-
cution. Printing is done row-wise, six elements per line to the end of
the row, in an eight decimal place floabing point format if the column size
is greater than 6. Otherwise each row beings on a separate line. Several
matrices are printed per page if they can be completely contained on a
page. As in PRI NT, the row size, column size, and a three character
title are printed. Also as in PR I N T, +the instruction can print the
title in functional notation.

- 16 -




26. WRITE. This instruction enables the person using the program to
print comments during the course of the program. These comments can use
Columns 14-72 and might tell what the program is doing at various points.
They are not necessary to a knowledge of the output, however, because the
entire input data deck is printed by ASP. A page eject may be accomplished
bya WRITE instruction with & 1 in Column 13, a line eject by O in
Column 13. A non-blank character must appear before Column 18; otherwise
that card is ignored.

2f. PUNCH. Justas PRINT and RI NT, the punch instruction
will handle a maximum of ten matrices in one execution, punching cards in
a form which is compatable with the L O AD routine. For each matrix
will be punched a row and column card with the identifying matrix name in
Columns 4-6. There is also an option in which matrices 2 through 10 can
be identified as a function of matrix 1. This option in addition to the
identification in Columns 4-6 will punch the first element of matrix 1 in
Column 24 to 38 of the row and column card of matrices 2 through 10. This
number is not loaded onto the computer ona I O AD instruction. It is
merely an additional identification for the programmer. To use this option
leave Columns 16-18, of matrix identification 1 blank.

28, L 0 AD. This instruction may read into core from the input tape up
to ©0 matrices at one execution. If more than 20 matrices must be entered,

L O AD instructions may be given at any time in the flow of a problem.

The decimal data for the IOAD is written after the END which de-
fines that particular problem that uses the decimal data. The first card
for every input matrix is a card with the row and column size punched in
Columns 11, 12 and 17, 18 respectively. As in all FORTRAN I-g routines the
fivzd point numbers (no decimal point) must be right justified; that is
if the row-column sizes are single digits they much be punched in Columns
12 a1 7.3 respectively. Following the row-column card are the elements
punc’ =i 3 per card with a field width of 15 between 1 and 75.

-17 -



This instruction will also load into a previously defined area if
the size of the matrix to be loaded is the same as the size of the pre-
viously defined area. Otherwise for every different identifier in the
IOAD instruction, there will be read a set of decimal data, stored in

the following order: matrix identification, row size, column size,

al,lal,e’ ees By o

This instruction will handle matrices of size 30 x 30.

29. BRI N G. This routine will read up to 9 matrices from any one of

9 tapes as defined by the tables in the SAVE instruetion. The tape number
is punched in Column 18. In the example the matrices which are identified
on tape 5as F, G, and H are being read into core as F, G, and PH.

Operation is as follows. The tape unit reads forward from its loca-
tion at the time of the instruction until it finds the first required matrix.
It then reads in that matrix and searches forward (without rewinding) for
the next matrix. If a matrix is not found an exit is made from the machine
and error statement number 7 is printed; the program does not continue. Thus
not all matrices on a tape need be brought, but those which are must appear

in the same relative order as they are stored on tape.

This means that to recover the first matrix saved on a tape, an REW
instruction must precede the EBERING instruction. The operation was pro-
grammed in this manner so that a sequence of matrices all having the same

identification symbol could be successively brought into core.

30. I F. This is the only instruction able to alter the course of the pro-
gram. In the example, if the first element of I4 is greater than or equal

to the first element of F, & transfer is made to an instruction which is
labeled HEAD 1 in Column 1 to 6. If the condition does not exist, a transfer
is made to HEAD 2 or if the area comprised of Columns 25-30 is ble»’ ‘lhe
next executed instruction will be the one following the TIF instruct. ..




An unconditional transfer can be made by comparing the same matrix.

The headings in Columns 1-6 may be any size character symbol and may
be punched in Columns 1-6 of any data card except decimal data and the BEGIN
control card. In case the heading required by an IF statement does not
exist, then a problem exit will be made. Error statement number 4 will be

printed.
Another restriction to the IF statement is the number of headings

for each problem. If there are more than 40 headings, error statement number
15 will be printed.

A sample heading appears on the IF statement itself.

31. BE G I N. This instruction marks the beginning of & problem in the
data deck. It precedes the first operation data card of every problem.
BEGIN instructs the translator that Hollerith information follows. If the
BEGIN card should be omitted the data will be read without processing until
a BEGIN 1s found or to the end of the data. As an example of the use of
this instruction see Fig. 5.

32, E N D. This instruction must directly follow the last operation card
of any problem. It instructs the executive program to return to the first
operation command and begin executing the program data. If the END card
should be omitted the executive program will attempt to read the decimal

data as Hollerith information and return with error statement 2.
Following is a 1list o program limitations and error statements in-

ternal to ASP., If an ASP error should be encountered, after writing an

error statement transfer is made to the executive program which will begin
by reading again without processing until the operation BEGIN is found.

In addition to the ASP error statements the FORTRAN I-@ will indicate

such errors as illegal decimal data on the input tape or redundancy on either
input tape or the tapes being used by ASP itself. If Fortran errors are

encountered the program will exit to the monitor.

Of the following limitations number 1 is the only one which the user
of ASP cannot remedy in general. The others can be controlled by taking
advantage of the replacement capability or the BLOT instruction or even
storing matrices on tape in one problem (as defined by BEGIN and END)
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and then developing & new problem following the first (with a second BEGIN -
and END) which calls these matrices from tape.

1) All matrices, except as specifically exempted in the dictionary, must
have their larger dimension less than 16. There is no general error return

for using too large a matrix.

2) There is a limit of 120 on the number of matrices of any size waich can
be carried in core. If the number is exceeded, error statement number 5 is

printed.

3) The program reserves a block of 11,000 words of core storage for the
matrices and the operation instructions. If the problem is too large, error

statement number 6 will be written.
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ERROR STATEMENTS

1) ERROR RETURN FOR INVERSE IN (X X X X XX X X X X X X),

In the operations which require inverses, RICAT, DECOM, INVRS, if
the matrix is singular the above will be printed with the symbol in paren-
theses identifying the operation ahd the first six characters following
the operation.

2) ERROR IN OPERATION XXXXXXXXXXXX).

This statement will be written if the executive program does not
recognize the operation as one of the thirty (excluding BEGIN and END).

3) ERROR IN IDENTIFICATION (X XX X X XXX X X X X) will be printed out,
with the symbol in parentheses identifying the operation (and the first
Six characters following the operation) in which a non-existent matrix
has been requested.

%) ERROR IN IDENTIFICATION (EEAD 1).

This will be printed if the non-existent heading (HEAD 1) is re-
quested in an IF instruction.

5) NUMBEROFMATRD(SYMBOISEXCEEDSEOAT(XXXXXXXXXXXX).

This statement is printed if an attempt is made to define more than

120 matrices for any one problem.

6) OVERLAP IN MATRIX DATA AND MATRTX OPERATTION DATA.

This will be printed if the block of 11,000 words for matrix data

and operations is exceeded.
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7) IDENTIFICATION ERROR ON TAPE B XX. (MATRIX (XX).

This will be printed if the matrix requested, (named in the paren-
theses) is not found on tape during the execution of a BERING instruction.

It is the tape analog of the core error 3.

8) DIMENSION ERROR IN (X X X X X X X X X X X X) will be printed, with the
symbol in parentheses identifying the operation (and the first six characters
following the operstion) in which the matrices are nonconformable for some
reason, or if the operation is storing a iesult in a previously defined
matrix region which does not agree in size with the resuit; for instance in
TRACE or INVRS if the argument is not a square matrix or in JUXTR if

the number of columns in the two matrices are not equal.

9) EIEMENT TOO LARGE FOR PRINT FORMAT IN TRANSIENT,

The print format in transient has space for only 4 characters to the
left of the decimal poinﬁ. Therefore all numbers in TRNSI should be
greater than -1000 and less than +1000.

10) SPILL IN (XXX XX X XX X X X X). Index register 1, 2, 4, address of
spill location and spill code follow.

This statement alone will indicate an underflow and the computation
will be continued. The above statement along with the following will indi-

cate overflow and the program will exit.
11) OVERFLOW ERROR IN -~ XXXXXXXXXXX X).

12) BIOT IS NOT AN ACCEPTABLE OFERATION IN AN IF LOOP.
For a complete sample output see Fig. 5.

13) EXCEEDED RESERVED BLOCK FOR HEADING VECTOR WITH X X X X X X .

This statement is printed if there are more than 40 operations which
have headings in Column 1-6. X X X X X X is the forty-first heading.
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CHAPTER II

THE EXPONENTIAL ROUTINES

1. Description of the Problem: We are interested in an efficient method

to integrate linear differential equations, and therefore we want to compute

exp(F t), F = const. matrix.
2., Theory: Let us consider the linear dynamical system

(2.1) % = F(t)x + a(t)u(t)

where x is an n-dimensional vector, the state and wu(.) is an m-dimensional

vector function, the control function.

Under very mild restrictions on F and G, this system will have
unique solutions depending upon the time +, the initial time to, the
initial state x(to), and the control function u(.). It is often convenient
to exhibit this dependence explicitly; we shall therefore write a solution
of (2.1) in the form

(2.2) 9, (t5 x(t ), t.)-
The notation implies that
un(toi x(to): to) = X(to)
and that
d
o 0,0t x(8)), 1) = F(t)q (65 x(t.), t.) + G(t)ult).

It is well known [3] that the solutions of (2.1) can be expressed by

means of the formula

- 88 -




- t
(2.3) x(t) = o, (t; x(to), t) = o(t, to)x(to) + ft o(t, 7)6(T)u(r)ar

o
which is valid for any x = x(to), t and t_ (whether or not t > to).

The matrix o(t, to) occurring in (2.3) is the transition matrix

of (2.1) and is uniquely determined by the requirements (k4]

(2.4) o(t, t) =I for all t
and
(2.5) %E o(t, to) = F(t)o(t, to).

From these properties and the uniqueness of solutions of (2.1) one can

show at once that

]

(2.6) @'l(t, to) @(to, t) for all t, t;

(2.7) @(t3, t)e(t,, t) = @(t3, t)) for all t,, t,, b 50

As an example, consider

2t - 1 t -1
X = . b'e
2 -2t 2 -t
where
e +°
2 t 2 t
2e -e e -e
o(t, 0) = t° &2
2et-'2e2 2et-e2J




For a one-dimensional system, the transition function for any linear

system is given by &
J P(t)ar
t

(2.8) o(t, t) =e °

If F is constant, the transition matrix is given by the matrix

exponential etF, which can be defined by the everywhere convergent power

series
o i
(2.9) etF = 3 .(EF_‘L

(To show the convergence of the series, observe that for p >0

ptgq i p+q i
tF tF
R
i=p i=p
for any norm derived from a vector norm. This shows that the matrix series
tF . . [tF |
for e converges in norm whenever the scalar series for e converges;
the latter however is well known to converge uniformly for HtFH in any
bounded interval, and this is equivalent to uniform component convergence of
etF )

This matrix function is of interest in this report primarily because

it is the fundamental matrix of the vector differential equation

(2.10) % = Fx (F a constant).

That is [Coddington and Levinson, 1955],

(t - to)F
(2.11) x(t) =e X(to).

This may be proved very easily by termwise differentiation of the

defining series, a valid procedure by its uniform convergence.
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Some other facts which can be proved about eTF are [Coddington
and Levinson, 1955]

A+B AB

(2.12) e =e'e if and only if AB = BA.
-1

(2.13) eTFT "~ _ qefipt for any nonsingular T.

(2.14) det ef = gbrace F

(2.14) shows that etF is always nonsingular. We can now para-
phrase (2.11) by saying that the columns of etF are n linearly indepen-
dent solutions of (2.10) and thus any solution of (2.10) can be expressed

as a linear combination of the columnvectors of etF‘

etF is computed in the ETPHI routine, using the series (2.9). We
are often interested in the forced system
(2.15) % = Fx + gu(t) (F, G constant).

The complete solution to (2.15) can be written as
o

(2.16) x(t) = etFX(O) + f e(JC - T)FGu(T)dT.
0

In sampled data systems u(.) is a piecewise constant and we have

t
(2.17) x(t) = etFx(o) + [ e(t - T)FGdT u(0)
0

over any sampling interval,

Making the substitution s =t - T, the integral in (2.,17) assumes

the simpler form
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t
[ [ eSFds]Gu(O).
0

t

The integral [ e°F

ds = I'(t) dis computed in the E AT routine.
Its concrete definitiog can be obtained by term-by-term integration of the

defining series for etF,

(2.19) r(t) = c; %i

r 7t exists, this may be written as F—l(etF - I); however I'(t) exists

even if F 1s' singular,

3. Computation: For computing etF, the sum of at most the first thirty-

seven terms of its defining series (2.1) is used. Thus we compute

% i
(3.1) o 3 tilb: .
i=0 I*

The sum (3.1) is actually formed as follows. Iet Ti be the ith term of
the expansion: TO =T, Ti = Ft, etc. The sum is accumulated and Ti+l
is obtained as

T. =_-§L—T.o
1

i+l 1+ 1

The following motivates why thirty-seven terms are used in (2.1)

and gives a condition necessary for the result to be accurate.

In the IBM T700-7000 computers a little more than eight significant
decimal degits are carried when operating in the single-precision floating
point mode. This imposes limitations on the accuracy of the program. Con-
sider a scalar cosine series, We know that for any real value of the argu-

ment, the absolute value of the function is one or less, Yet if the argument
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20

20__
20! 8
less than one has no effect. That is, if any term of the series exceeds 107,

were 20, the term is so large that the addition to 1t of any number
we know that no answer will have correct digits to the right of the decimal
point, Thus if we want an answer that is correct to four decimal places, no

term of the series may exceed th. The largest term of the et series is

1

Tj where 1 1is the smallest integer such that EEE < 1l; ‘therefore Tj =
where Jj = [t], the greatest integer less than t. For our purposes
4.j h

%7 should always be less than 107, which implies that a conservative bound
iy 100 4

J
EH

for t is 10, since

We can apply this analysis to the matrix case by using norms. Speci-

fically let us define our norm as

Jal = Min (max z la; 315 mex la; .13

v

In this norm we have

(3.2) laB| = [all 8]  and

(3.3) la, .| = [lA

a, .
iJ

We would like to say now that if |t

* ||a]] = 10 +then we are assured
of four decimal place accuracy. (3.2) and (3.3) guarantee that if the condi-
tion is satisfied, every element of every wmatrix in the sum will have abso-
lute value less than th, which was a necessary condition for four-place

accuracy. In addition it is necessary that we not terminate the result too
%
tA

soon, The last term taken will be 361 each element of which is less

than .27 - 10-5. The remainder can be majorized by a geometric series whose
sum is 10'6. This begins to look as if |[tA|| < 10 is sufficient for

four-place accuracy. This however is incorrect. Clearly since elo < 22000
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Wz can hope for no more than three place accuracy because we only .
have three decimal places. But the situation is even worse than this. By
the time the largest term is reached the partial sum is larger than 104,
from here on to the end of the summation, digits less than about .5 ° lO"5
will be dropped and digits of this size can occur out to the term k = 33.
4

Thus for about 25 terms we are losing digits averaging 2.5 ° 10~
for a total of about .006. Thus for positive eigenvalues the error is
bounded by about .006. For negative eigenvalues the problem of large accumu-
lations doz=s not arisej; here we only have the differences of numbers about

3000 which means that we should get four decimal place accuracy.
This analysis indicates that the restrictions wé apply to ||At|] will

suffice to give us four decimal place accuracy with (algebraically) small
numbers and more than two decimal places (at least six significant figures),
with large numbers.

The specified norm was chosen because, being sums of absolute values,
it 1s simple and quick to compute and because the minimization gives a fairly
small norm. This is of course desirable so as to maximize the allowable
step size. We could not, however, use ||A| = max Iai.| because in this norm

it is not necessarily true that |AB| = ||Al] [|B].

E AT is computed in much the same way except that the initial term

of the series is tI, not I,
The arguments concerning the maximum value of t apply here also,

k
with some modification. If i%gl— is the largest term in the exponential,
k-1 -
then 5 will be the largest term in I'. Again this must be less than
lOu, 80
N
10 'k
(3 4) t = =
figd]
This is mechanized as follows: First T is halved until
T 10.001 . .
= ;k < —ﬂﬁﬂ——. Then if HFTH is greater than 8, we can check that
10*10
T = T15.600) If it is, we accept T and proceed. If [[Fr| is less than
L] 2+ '
8 and greater than 6 we check that T s ;931_‘ If it is, we accept T and
8
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proceed, This continues until, if o < ||Fr|| <2, T must be less than 101‘,

and is halved until it is less than 10”. (See Figure 2 where

L L L L
L 10 "33 10752 1072 10710:
C. = 10 c = C. = g, = and (C_ = _._.___—.._.)
1- 77 T2 W2’ 3T g2 7 Tk g 2 (10.001°

In order to compute ¢ = eTF, then for a T which is too large, we

select T = 25 such that |[Fr|] < 10.001. To compute ¢ and

T k
T=/ etht, we have additional restrictions as described above. In any case
we ar%ive at a T = IE which will give us the accuracy described above. We
F)Ek TF

2
then square eTF k times, obtaining (eT = e by (2.12). The proce-

dure with I’ is similar. It follows from the fact that

[ eFay = [ e%at + ™ Fat.

The procedures have their failings of course, the multiplications
and additions required to bring T wup to T dintroduce errors. No attempt
is made to control this in the machine; however if a print is requested,

the T wused is printed and will indicate how many squarings were required.

An option was found to be necessary. If we wish to compute the
riccati solution over a given interval we must compute the fundamental matrix
of the corresponding euler-lag}ange equations over a submultiple of the
interval (t - to). This is signaled by putting an extra matrix in the
calling sequence (only in ET P HI, not %n E AT). When we exit from

- o

ETPHI the subinterval length T = T where T will be the maximum
2
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value to satisfy the condition that T = Eﬁé%gl will be in the extra matrix

and the exponential with that value of T will be in PH. At first it
seems that this could be handled by the ordinary process of reducing T
for the series computation and squaring up to the correct value. This is
a poor procedure however, because the euler-lagrange equations have both
stable and unstable roots. Althouzh the riccati may converge, the funda-

mental matrix may overflow if T 1is too large.

For illustrations of most of these processes, s e Chapter I, Fig.

5-18 .

The summation process terminates at the kth term if every element
th
of Tk’ the k¥ term of the exponential sum is 0. By virtue of the float-
ing point spill routine a zero matrix can occur if every element is less

than approximately 10-40.

Some experiments were made in this subroutine with what we have
called pseudo double precision. This involved two changes: 1) All scalar

products in matrix multiplication are accumulated in double precision,

J
rounded and stored in single precision. For instance, c¢,.= X a,, b .
iJj k=1 ik 'kJ
prouucts aijbkj would be computed as the single precision product of
)/
single precision numbers, the partial sums % a,.b ., however, would be

-1 1J kJ
kept as the double precision sum of single precision numberg. After the

double precision cij was obtained it was rounded to obtain the single
precision value for storage. 2) These single precision terms are accumu-
lated as above in double precision when the exponential is completed, the

double precision matrix is rounded to single precision for storage. Theoret

9

cally of course, this procedure is meaningless, for instance if we add 107,

) 9

10 7, and -10", in that order, in single precision we get zero. Using

pseudo double precision we get 10-2. But the immediate objection is that

9

the errors in any single precision representation of 10

1072,

are larger than
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The results of a few experiments tend to corroborate these
ideas. Most of the results achieved with the double precision code
showed markedly greater significance, perhaps one more decimal place.
However, in the most complicated check, the magnitude of one error
actually increased. Tentatively one might say that when working with
input numbers, this procedure is very helpful, but after a long sequence
of computations, the mechanics of truncation create a situation where

ordinary floating point is essentially the optimal computation procedure.

4. Checks. (A) The exponential and integral exponential were computed
for the 7 x T matrix diag (-10, -4, -1, 0, 1, 4, 10), with T = 1.

The results appear in Fig. 3-A and 4-A, the correct answers in Fig. 3-B
and 4-B. Because the matrix is diagonal, the error analysis applied
exactly and the answers show this very well, In the submatrix (-10), where
we are not only at the iimit of the acceptable range but are taking
differences, we barely have four place accuracy and no correct signifi-
cant figures. Where differences are not being taken as in (10) the answer

is correct to seven significant figures.

One phenonemon that occurs repeatedly in series computation is
that in the exponential of the positive eigenvalues, the computed value
will be invariably less than the correct value because the error is caused
by truncation of positive terms. With the negative eigenvalues the error

does not display this characteristic.

The exponential of this matrix for T = 1 was also computed using

the pseudo double precision code. This gave the result

oF  diag [4.4255785E-5, 1.8315656E-2, 3.6T8T9MLE-L,

9.9999999E -1, 2,7182817, 5.4598150E2,

2.025454E), ]
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(B) The exponential and integral exponential for a 15 X 15 Jordan
block with eigenvalue zero were computed with T = .1, 1., and 10.
The results were very good, probably because the series truncates.

The answers were correct to more than seven decimal places. (See Fig.
5-10.)

(C) The exponential of the 7 X 7 skew-symmetric matrix.

0 1 0] 0 0 0 0
-1 0 1 0 0 0 0
0 -1 0 1 0 0 0

was computed for T = 1. This matrix should have been orthogonal. Multi-
plying by its transpose we obtained the identity matrix with errors of
less than 2.107. (See Fig. 11.)

Using the double precision code we obtained an identity matrix

with errors of 2.10 .

(D) Using this orthogonal matrix we computed the exponential and inte-
gral exponential of OAO™' where A was the matrix

diag (-10, -4, -1, 0, 1, 4, 10) used in Check (A) and O was the
orthogonal matrix obtained in (C). The issue was confused slightly by
the fact that 0' was not quite equal to O-l, but the accuracy was
not greatly reduced. Except in the largest element, where the error was
three in the seventh significant figure, the worst error was 2.5 in the
fourth decimal place. (See Fig. 12.)
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The exponential was computed using the double precision code
and generally reduced the errors significantly, but one element, which

should have been zero, actually increased in magnitude.
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CHAPTER IIT

THE TRANSIENT PROGRAM

1. Statement of the Problem. This is a program to display solutions of

a lirnear differential equation.

2. Theory. Having obtained a feedback control law for a system, we usually
like to have some means of observing the output. Wz can do this most
readily by computing the response of the system to unit initial conditions

on the state wvariables.

If we have a differential system

Fx + Gu(t)

e
it

(2.1)
Hx(t)

y(t)
with control law

u(t) = - kx(t)

then we can rewrite the system as

(F - GK)x

e
]

(2.2)
Hx(t)

y(t)

with solution

x(t +7) = eT(F - GK)x(t).

On the other hand, we may have a system which is monitored at in-

tervals Ty while the control is changed only at sampling intervals =T

(12 is some positive integral multiple of T

2
)
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Furthermore the system may have a constant forcing term.

%, Computation. The Transient Roubtine mechanizes a set of equations which
encompass these situations and provide, along with a time history of the
solution, a rather detailed description of the process (see Chapter I, Fig.
16). For instance, the times when control is computed are marked with an

asterisk. The equations used are:

x(t + 7))

= Px(t) + gu(t)

u(t) = Jr - Kx(t  +i1,) i1, =t -t = (1 + 1),

Thus P is the transition matrix, G is the integral of Green's function,
JR represents a forcing function and Kx is the feedback term. The state
vector is monitored at intervals Tl and the control is constant during the
sampling interval T2.

In certain applications the state vectors are not the observables
and in such cases it is desirable to monitor the actual system output.
Furthermore at most seven state variables can be printed. So instead of

printing the state variables we print
y(t) = Hx(t)

wnere H is a constant matrix having at most seven rows.

L. Checks. The Transient Roubine is, mathematically, an extremely simple

program; but the logic is somewhat complicated. Most of the complications
of the routine are invol#ed in setting up the printout with the correct
number of state variables, control variables, etc. This makes it impossible
to design a single run to check every possibility. Repeated use has given
us considerable confidence in its freedom from error. For a sample run see

Fig. 16, Chapter I.
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Select matrices
J,K,R,X,PH,G,H,T

Dimensions
Conformable

Construct
Print Format
To Handle
Variable Vector
Sizes

Y

0-q!

Y

J ¥RV

1

u=V-K=*X e

TRNSI

Y=H*X

A

No

Oout

Print <_J

q' +1-q'

Yes

PH*X + G*u = X

Fig, 1
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CHAPTER IV

THE GENERALIZED INVERSE PROGRAM

1. Description of the Problew. Many problems in optimization require com-

putations in linear algebra which go beyond finding an inverse. For instance,
determination of rank, least-squares solutions of linear equations, etc.

These problems are readily handled via the concept of a pseudo-inverse (or

generalized inverse) of a matrix.

2. Theory. In matrix calculus there is a frequently recurring difficulty
due to the fact that the inverse of a matrix does not always exist. To
prove the existence of the inverse of a given matrix is often cumbersome and
difficult. Moreover, in many cases solutions of a set of linear equations

exist even when the inverse of the matrix defining these equations does not.

To obviate some of these difficulties, it has been found convenient
to make use of the notion of a so-called pseudo-inverse of a matrix.
Roughly speaking, a pseudo-inverse must possess two properties to be useful:
(i) it must always exist; (ii) when used in place of the inverse (which may
not exist), it should give sensible answers to guestions such as solutions

of equations.

We shall present here a brief discussion of the properties of pseudo-
inverses, in particular the "generalized" inverse of Penrose. Further de-

tails may be found in Reference 1.
References.
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DEFINITION. Iet A denote the Moore-Penrose inverse of A. This i

a matrix that satisfies the following axioms:

(i) anfa = g

(ii) Afaa = Aﬂ,
(iii) (AﬁA)‘ = A#A,

(iv) (aaf)r = aaf,

It can be shown that Aji always exists and is unique (see Theorems
(2.5) and (2.8) below).

The axioms are readily seen to imply that
i3
(2.1) ATT = A,
(2.2) af o4l g a7t exists,

(2.3) arf o Aﬂ’.

It is not generally true that (AB)iI = B“A#.

Furthermore Aii is a discontinuous function of A. For instance,

let
1 a
A=
1 1
then _ _
_— -
1-a 1 -a
#_ 41 _
AT=A" = -1 1
1l -~a 1l - aJ
for a# 1, but
1/4 1/
Aii =
1/4 1/4
for a= 1., It is not true in any sense that lim Aﬁ(a) = Aﬁ(l).

a—1
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(2.%4) LEMMA. A(A’QA)“A'QA = A for any nonsingular symmetric

matrix Q.

Proof: Iet C = A(A'QA)A'QA - A. Then C'QC = O,
axiom (i). This implies C = O.

(2.5) THEOREM. A exists.
Proof: (a) If A = diag (d.l, ceey dn), then let

# -1,
g1 =8 i 4 A0
#

130

a

otherwise.

)
It

by use of

(b) If A=A' is symmetric, we know that A = UA U',

#

orthogonal, A diagonal. Then = UAﬁu'.

(c) If A is arbitrary, we let

(2.6) At o (A'A)”A'
or
(2.7) L A'(AA’)ﬁ.

Either of these satisfy axiom (i) by use of Lemma (2.4) and axioms

(ii), (iii) and (iv) by use of part (b) of this theorem.

(2.8) THEOREM. a¥ is unique.

Proof: Iet X and Y be Penrose inverses of A. Then:

XAX — A'X'X = AtylAlle

>
I

= A'Y' XAX = A'Y'X = YAX = YX'A'

- 125 -
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In particular, equations (2.6) and (2..7) define the same matrix At

That hypotheses (i) - (iv) are independent (i.e., necessary for

uniqueness), will be shown later.

The following theorem and its corollaries give, in increasingly
general form, the main properties of the Penrose inverse. First, however,

we need an elementary fact:

(2.9) ORTHOGONAL PROJECTION IEMMA. Given & normed vector space V,

a constant vector be V, and a linear map A: V - V. Then

|4x° - o] = min Ax - b
xevV

is equivalent to

(Ax, &x° -b) =0 for all x in V.

Proof: Assume (Ax, Ax° - Db) =0 for all x in V. We want to
prove that ||Ax° - b| = |[Ay - b]| for y in V. Any y in V can be re-

presented as

y=x +1z, z €V.

Therefore

+ 2(fz, &x° - b) + ||az]®.

Since (Az, Ax® - b) 1is zero by hypothesis and |Az]|° 2 0, the desired
conclusion follows.

Now assume that [Ax° - b = |Ay - b|| for all y in V and show
that (Ax, Ax° - Db)
that (Ax, Ax° - b)

0 for all x in V. Suppose there is an x such
a #£0. ILet
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= 5-
| Ax|]
Then
lav + & - of% - flax® - bl
2 (o] a2 2a2 - a?
= ||av]]® + 2(&v, Ax™ = D) = 5 - 5 = 5 < 0.
el P
This contradiction proves the lemma,
(2.10) THEOREM (Penrose): Consider the equation Ax = b. Iet
x° = A#b and x % xo. Then either
(a) lax - vl > ax® - bll; or
(b) lax - of = &x® - bl ana x| > IX°].
Furthermore the minimum value of [l&x - bf| is
2 2 2 2
(c) 1ax° = p|" = Ipl© - ax°|= = |ol y
T=AA

In words, x° is the smallest (in the usual norm) vector which gives

the least square error.

o

Proof: (a) We must show first that (Ax, Ax - b) = 0. In fact,

o]

(A, &x° - b) = x'A'AAfD - x'A'D,

and by axiom (iv)
ﬁl
x'A'A" A’ - x'A'D,

(AX; Ax - b)
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which is seen to be zero by equation (2.3) and axiom (i).

By Iemma (2.9) this proves

lax - ol = [lax® - ol
(b) Suppose ||Ax - b|| = [l&x® - b||, and let us write x =x° + v,
where v £0. Then [Ax - o2 - ax® - b|® = 2(ax° - b, &v) + v = o,
but it has been shown above that (Axo - b, Av) = 0. Therefore Av = 0 so
that v is in the kernel of A,

11 = Jx = (x = <)% =[x + Ik = x°% - 2(x, x- x°)

\

= |xl® + WI? - 2viafe - vy

5

= [ = |]v)® - 2v'at'y.

But, by axioms (ii) and (iii)
Aﬂ' = A#'A'Aﬁ'v = A#'Aﬂav = 0.
Thus
2 2 2 2
<)l = [°1° b vl > |x°]

which proves part (b) of the theorem.

(¢) By direct computation, we have

lax® - ol = iz - aafyl® = ol® .
(T - AA7) (T - AAT)

But (I - AA”)' =1 - (AA#)' =1 - aat by axiom (iv). Moreover, (I - AAﬁ)

is idempotent by virtue of axiom (i). Hence
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2

ax® - b}® = nbui b ol - x| QE.D.

This theorem could have been stated as a problem in minimizing the
quadratic form ||Ax - bH2. Indeed, we can extend the theorem as follows:

2,11) COROLLARY. Consider |Ax - b]li, where P is symmetric,
non-negative definite. ILet xO= (AﬁPA)‘A‘Pm Again we have aiternatives
(a) or (b) of Theorem (1.10), while the minimum value of llax - blli is

2 2
”Axo - b“P = ”b” it .
P~PA(A'PA)"A'P

Proof': Since P 1s non-negative definite s tric there exists a
symmetric matrix Q = P]'/2 such that P = Q2 = (Pl 2)2. This allows us to
write the quadratic form as “Pl/éAx - Pl/ébﬂe. Hence in view of the unique-
ness theorem (2.9) all we have to show is that

(A'P)nA'Pl/Q = (Pl/gA)”.

This is done by verifying directly that the left-hand side satisfies the
axioms (i) = (iv). Q.E.D.

Theorem (2.10) and its corollary have the following simple geometric
interpretation: Ax°  is the orthogonal projection (relative to P) of b
on the range of A. xo itself is the shortest vector whose image under A

is this projection.

It is worth noting also the following: If the minimization problem
is solved formally by equating derivatives to zero, the resulting formulae
are rigorously correct 1f inverses (which way not exist) are replaced by the

Penrose inverses.

A further extension of these results can be made to sums of quadratic

forms.
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m
(2.12) COROLLARY. Consider Q(x) = = [lA, x - billg . Iet
1

o m : 3 m : o i=1
x"=(ZAPA)(ZAPD) and x#x . Then either
i=1 i=1
(a) Q(x’) <Qx) or
(b))  Q(x’) =a(x) and [x°] < |ixl.
Moreover,
(o] m “2 “ oyl
(e) Qx") = = |b, - A x|lZ .
je1 i Pi i Pi

Through this proof we assume that the Ai and Pi are n X n
matrices and the bi are n vectors. There is no restriction since we
may assume the addition of zero rows and columns where necessary.

Proof: This may be established directly by defining the mn dimen-
sional vector b, the mn X n matrix A, and the mn X mn matrix P

.7 T B
by A Py
b=|.{, A=].]{, P= . )
b A 0 P
m m m

The the minimization of Q(x) is the same as the minimization of |Ax - b[|§,
so that (2.12) follows from (2.11).

2
5 et

(2.13) COROLLARY. (Consider the gquadratic form ||Ax - D]

-x0 = ((T - A“A)[(I - A#A)R(I - A”A) ]“(I - A”A)R - I}(A'PA)“A'Pb
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and x # x°. Then either

() ax - bl > 4 - ol ox

() e - vl = 4 - oll, mma el > g

The minimum value of the form is, of course, still

(c) a® - o] g
P - PA(A'PA)TA'P

Proof: First we show that the most general vector which will give
the minimum velue of [[Ax - bHP is

(# #) < = (A'PA)ﬂA'Pb + (I - A‘*A)v

where v is any vector. That xl gives the minimum value follows from
Corollary (2.11) and the fact that (axiom (1)) A(I - AﬁA) = 0. To show
that the form (# # ) encompasses all vectors which minimize llAx - blll?J it
is sufficient to note: (i) All vectors y such that x° + y minimizes
|Ax - bll, are in the kernel of A; this vas shown in the proof of Theorem
2.10, (;_1) All vectors x in the kernel of A can be represented as

(I - AﬁA)x, a fortiori as (T - AﬂA)v, where v is an arbitrary vector.

These observations simplify the original problem to minimization of
ll(A'PA)ﬁA'Pb + (I - AﬁA)vHR with respect to v, which can be done by
Corollary (1.11) to give the desired result.

(2.14) IEMMA. (Generalization of ILemma (2.4)). Iet B(t) De an

m X n matrix whose elements are continuous in t in the interval [0, T].

Then

T T
B(t) - B(t)[f B'(v)B(r)ar]* [ B (v)B(r)ar = 0
0 0
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for all t in [0, T].

Proof: Iet D(t) denote the matrix difference above. Using axiom
(1), we find that

fTD‘(t)D(t)dt = 0.
0

Hence

T 2
fOIlD(t)xH dt = 0

for all fixed x, which (remembering that D(t) is continuous in t) im-
plies that D(t) =0, 0=t =T,

B(t) may of course have Plecewise constant elements and the lemma
can be applied to finite sums. Note that the matrices in such a sequence

need not have a constant number of rows.

An examination of (2.10) shows that in order to obtain the minimum
error property only axioms (i) and (iv) are required. (ii) and (iii) then
assure that the norm of x° is minimalj in control theory where the norm
of x° represents the required control energy, this is & desirable property.
In general, if one of the axioms is dropped, the pseudo-inverse will not be

unique. For instance, let

0 1
A=
0 1
then
0 0
0 1
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satisfies (i), (ii), and (11i), but not (iv).

satisfies (i), (iii), and (iv) but not (ii), and

satisfies (ii), (iii), and (iv) but not (i), whereas

is the Penrose inverse.
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The following corollary to Theorem (2.10) gives an alternative

characterization of the Penrose inverse.

(2.15) 1et A' # AY e any matrix satisfying (i). Then ”A*H > HA#”
where [M| is defined as (trace M'M)Z = ( % mii)ﬁ.
i,J

Proof': To prove this, it suffices to note that the matrix equation
AXA = A

may be interpreted as a vector equation in the elements of the matrix X.
Since pseudo-inverses always exist, this equation always has a solution.
By Theorem (2.10), A s the "smallest" solution in the sense of the norm

defined above.

A further characterization is that given by Greville (4]. Here Aﬁ
is defined as the unique matrix satisfying (i) and having its row space and
column space the same as A!.

This characterization may be established by noting that Aﬁ and A’

have the same kernel.

If A'™x =0, then

A#x = A#AA#X = ﬁAﬁ'A'x =0,

and if Aﬁx = 0, then
# 4
A'x = A'A" A'x = A'AAT = 0. Q.E.D.
One of the most fruitful characterizations of the pseudo~inverse
arises from a consideration of its mapping properties. Iet A map the
space V into the space W. Denote the range of A by R(A), the kernel

of A by K(A), the orthogonal complement of K(A) by CK(A), and the
orthogonal complement of R(A) by CR(A). Then the requirement that the
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‘error HAA#b - bl is minimum is equivalent to saying tnat A" is the
inverse of A on R(A) and maps CR(A) into K(A). Clearly then if
we want Aﬁb to be of minimum length, we must have that A# maps
CR(A) into zero.

We obtain the following two formulae which are equivalent to the

four axioms:

ia) Ataar = A

11 v)  Aafat - At

Because we have concentrated so much on the lack of uniqueness of
matrices which give the solution of the minimum error problem, we should
.point out that there 1s only one such matrix if either A'A or AA' is

nonsingular.

We conclude with two formulae for the pseudo-inverse,

(2.16) PROPOSITION. ILet 5" be any matrix satisfying (i), then

aF = arcaan)Taqara)tar,

This is easily proved using ia) and iia).

The following is an iterative formula; we wish to find (A al® where
a 1is a vector. Unfortunately we must distinguish two cases. When & d R(A),
(renk [A e] > rank A, (I~ AAﬂ) a #£0).

An[]'_ - M}
a'(I - AA#)a
(2.17) [aalt= .
a'(l - AA#!
a'(l - AA#)a

When (I - AA#)a =0
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t 4 =]

aa'a™ A

[ A#{I ol

l1+a'A" Aa

[Aa] =
a'A#'A#

1+ a’A#,A#a
L i

We must assume that a is a vector only in the sense that the number
of separate cases appears to be the number of possible ranks of (1 - AA#)a.
If minimum error is the only desideratum and minumum length of the
1
' #
a'(I -~ 4AM)a

fitting vector can be ignored, (2.17) can always be used with

set equal to zero when the denominator is zero.

S Computations Several proposals for computing Aii have been made in the
literature. These algorithms are often very inefficient from the point of view
of numerical computation (though they might be useful in getting exact answers
in simple cases). For instance, in establishing the existence of the Penrose
inverse for a symmetric matrix S we used the existence of a diagonalizing
transformation, but this involved finding all the eigenvales of S which

is a more difficult problem mathematically then computation of Sﬁ. More -
over, the algorithms proposed so far do not simplify when A-l exists, where-

as that given here does,

A description and proof of the algorithm follow.

Phase 1. Compute AA' or A'A, whichever has smaller dimension. Call
the resultant n x n, symmetric, nonnegative definite matrix B. Tt will

suffice to compute Bn because then one can write

At o (A'A)”A' or

A o (araant,
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Phase 2. Compute a nonsingular matrix Tl such that T.BT

T -
180 = E

is a diagonal matrix with elements zero or one.

The matrix Tl is computed iteratively in at most n steps by a

modification of the gaussian elimination procedure.

As a numerical example, we shall carry through the reduction of
the matrix.

[ 2 1 : -2‘
1 25 -8 6
B=1.2 8 4 ol
-2 6 0 L
L )

Iet Tl(o) =1 and B(O) = B(l) = B.

Step 1. Select the largest diagonal element (IDE) of B(l) and

divide by its square root the corresponding row and column of B 1 and
(0)
Tl .

In the example, the IDE of B(l) is 25 and occurs in the 2nd row

and column. Thus

2 1/5 -2 -2 1 0 0 0-1
@) 1/5 1 8/5 6/5 (1) _ o 15 o 0
2 -85 4 ol t o 0 1 0

L-e 6/5 0 u_l o 0 0 l_J

Having completed Step 1, we obtain

(31) p (D (O _ 5@

1 ] '
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: (1)
Steg 2. let kl be the row and column in which the IDE of B

occurred. Multiply the kl-th row of B(2) resp. Tl(l) by the iklath

element of B(2) and substract the resulting row vector from the i<th row
of B(E) resp. Tl(l). Do this for all 1 f kl' Then set all the elements

(2) (2)
b,7’j equal to zero, except D = 1.
1 ’ kK
49/25 0 -42/25 -56/2-5_1 1 -1/25 0 1
(3 _ 0 1 0 o |, Tl(2)= o 1/5 0 o
-k2/25 0 %/25 48/25 0 8/25 1 0
-56,/25 0 48/25 64/25 0 6/25 0 1
L - - .
We have now the identity

Step 3. Apply Step 1 to B(B) disregarding in search for the largest
diagonal element the row kl which occurred in Steps 1-2. Now k2 = L.
The result is:

[ W/e5 0 -k2/25 .7/; 1 -y25 0 O
s | o 1 0 o, T1(3) -lo 15 o o]
-2/25 0 %/% /5 o 825 1 O
- 7/5 0 6/5 1 0  -3%20 5/8
Step 4. Apply Step 2 to 5*).  Then
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o 0o 0 © 1 -1 o -1/8
ey |O 1 0 0 0 1/5 0 0
o o o0 © 0 /2 1 -3/h4
o o O lJ LO -3/20 0 5/8
which completes the reduction in the example considered.
At each state of the iteration we have the identity
?
(3.3) Tl(a)BTl(o‘) _ (o) o1, .., 2q s on.

If the matrix

(3.4) p{2d + 1) _g
for the first time, then
(3.5) rank B = a.

In the example, q = 2.

This algorithm is a slight modification of one given by Ref. [3].

phase sA. If B23 ¥ 1) _ 1 - unit matrix, then B 1is invertible
and hence
-1 -]
_ o (29) (2q)°

B= [0 7] [Ty ]

(3.6)
| 4
Bf = B"l - Tl(eq) Tl(eq)'

Phase 3B. Suppose B(2q +1) =k % I. Then there exists a permuta-
tion (orthogonal) matrix P such that
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E = PTBI'P' = PEP' =

That is, the first q elements on the diagonal are one and all other ele-

ments are zero. Note that P-l = P!,

Further we have
(3.7) E = PTP'PEP'PI'P,

§0 that T = PIP' is the matrix given by the Andree algorithm for the
matrix B = PBP!.

The method of construction of T given above in the Andrée algorithm

assures us that T has the form

H]
]
=l
H

ne=g

where V 1is a nonsingular q x q matrix.

Partitioning B in the same manner we write

p— )

By Bio
B = _ _

1

Bio Byo 1

where §ll is nonsingular.
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Substituting (3.8<9) into the identity TBI' = E, we obtain the

relations
TR Ut _
VB V' = Iq,
IR It A _
(3.10) 7B W'+ TB, =0
- = \mp o, 8= _—_
(W’Bll + Blg)w + WB,, + By, = O.

These equalities imply that

I 0 W'
_ q By 0 I, W
B =
- 0 0 0 0 0
and
-W! I 0
D 0 I, W q
(%12) C = = B
0 0 0 0 -W 0
L - -t [ - —t

— W T
where D = (]:Cl + W W)Bll(Iq + W'W).
Because the rank of the sum of two nonnegative definite, symmetric

matrices cannot be less than the greater of two ranks, (Iq + W'W) and

D are of rank ¢, hence nonsingular.

Then
I 0 p~t o_l I -W!
(3.13) s¥ -
-W 0 0 0 0 0
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as can be verified by checking the four axioms of Penrose.

And the fact that

(3.14) s¥ = prEtp

follows easily.

The steps followed in the machine are simplified in that the only
matrices required are W and D. Moreover the permutation matrix P

is not actually computed.

Step 1. Iet U be the following matrix

,'/—tij if eiizo
It i# Uy =
0 if e,., =1
ii
0 if e,y = 0
u,. =
11
1 if e,. =1
11

In the notation used previously U can be written as

In the example
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0 1/t 0 -7/8
0 1 0 0
U= .
0 -1/2 0 3/h
0 0 0 1
Step 2. Compute
U'BU = C.
The result is

ro 0 0 0
0 35.125 0 -k.5625
0 0 0 0
0 -k, 562 0 13.9062

i 5025 3.9 !ﬂ

which can be written as P'CP.

After deleting the rows and columns corresponding To € i1 = 0 we
have the same nonsingular q x q matrix vhich we have previously called

D.

Step 3, Compute D™' by means of the Andrde algorithm. As in
Phase 3A, we have

-1 o omt
D = T2T2.

Step 4. Compute
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This completes Phase 3B.
Phase 4. We now compute A* using either a¥ = B¥ar or aF A'B#.

A flow chart appears as Fig. 1; if a plus sign is used in column 16
of the PSE UO dinstruction, implying that the argument matrix is already

nonnegative definite, then the symmetrization process is not executed.

Remark: This algorithm has two very important features:

a) it takes much less time if A is invertible.

b) AV s a discontinuous function of A because it depends
critically on the rank of A. The Andrée algorithm and a norm error control
newly developed allow to some extent control of the "apparent" rank of A.

This is done as follows.

The algorithm reduction is carried out until the largest diagonal
element of a non-reduced row is less than €, where € 1s the product of
the largest diagonal element and a number Pl of PIZER. (Pl is 10-2 unless
the PIZER instruction is used.) Then

_ st -8 ., 5" s8* - B . ri>
B I3 I12¥) < 2

is computed and the test pi s Py 1 is made where P2 is the second number

in the PIZER instruction and 1 = r, is the rank at the ith iteration. If
Py = Pi_1 and ry < n, the reduction is carried out on another unreduced

row; this process continues until the above p condition is met on r =n
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‘or a diagonal element is negative or zero. With sufficient knowledge of
the matrix B one can choose Pl so that the p computations are kept

at a minimum and one can choose P2 to control the rank.

4. Numerical Checks: The exact computation of the generalized inverse

involves a very large amount of work.

A) The generalized inverse of the matrix of the numerical example of Sect. 3

has been computed by hand, using the procedure described in Sect. 3. The re-

sult is as follows:

ro.5509 7061 -0.0110 26088 -0.4691 1021 =0.638

-0.0120 26088 0.2973 7046 -0.0755 12056 0.0975

B _
108" = | 5.4691 1021  -0.0755 12056  0.k2% 693  0.5145

-0.638 3101 0.0975 64232 0.5145 5108 0.7511

The machine-computed value of the generalized inverse is:

proe

0.5%09 7060 -0.0110 26087 -0.4691 1020 -0.6328

" -0.0110 26087  0.2973 0%  -0.0755 12051 0.0975
10B" =
-0.4691 1020 -0.0755 12051 0.423 6933 0.5145

-0.638 3102 0.0975 64228 0.514r 5110 0.7511

.

This computation used iteration.

E: ¢ exact generalized inverse of the mabrix
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was computed in [4].

r608

1 __ 1-197
6, 38

-4 31

x2h

His result is

-%2
212

204
-255

To 10 decimal places, A‘t is given by

lOgAﬁ =

The rank of A is 2 interated.

F'9 .5029 69678

-3.0790 87215
-6.734 80150
5.0640 85256

=

floating decimal digits):

—9-5029 695
-3.0790 870
-6. 73k 801
5.0640 824

~5.6580 18131 2.0318 81;96l+-
3.3135 3480 3.7824 32010
3.1884 96405 -3.9074 71085
-3.6730 22820 -0.8909 03407
A

The machine-computed result is (carrying 8

-5.6580 181 2.0318 849T
3.3135 253 3.782k 319
3.1884 96k -3.907h 1L

-3.6730 227 ~0.8909 0358i
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The error amounts to only about 2-5 parts of the last deciman digit carried
by the machine. This is of course exceptionally good. As a check, one
finds that the machine result satisfies (i) to about 1 part in 107 and (11)
to better than 5 part in 18.

C) In addition to this we wanted a check that would show the differences
between PSEUO, PSEUO+, ad INVRS. This required a positive
definite symmetric matrix. For this purpose we selected a matrix introduced
by H. Rutishauer and appearing in Newman and Todd, "Rvalustion of Matrix
Inversion Program"s, SIAM JOURNAL December 1958. This is denoted by A, = BB!

in the reference, where

(-1)? 12
jg-1
b,. =
1 0 1<y
-1 2 A
A, is B'B  because B~ = I. The conditioning number P(Alz) —
59 M
is asymptotic to e2‘77n. Hence assuming the asymptotic formula to be correct

for n so small, we choose n =7 since this gave P(Alz)z 108, which is

about the limit that we could expect to handle. We print out A12 in Fig. 2,

A_I:zL B2B in Fig. 3, the difference between 1112 and A12 as obtained by
U O+ in Fig. 4, and the difference between A12 and Afz as obtained

PS
by SEUO in Fig. 5.

g =
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CHAPTER V

THE DECOMPOSITION ROUTINE

1. Statement of the Problem: It is frequently necessary to determine the

rank of a matrix, factor it into two components, etc., This subroutine does
such steps, without the necessity of writing a separate program around
PSEUDO.

2. Theory: 1In considering systems of the form
X = Fx + u(t)

where u(.) is a random process with a singular covariance matrix W, it

is desirable to transform to a representation

X =Fx + 6v(t)

where v(.) has a nonsingular covariance matrix. If we obtain a factoriza-
tion W = G'G where the number of columns of G is the rank of W, then
the new representation is obtained with v having a covariance matrix equal

to the identity matrix.

Another application occurs in the brocess of investigating the equa-
tions associated with a given transfer function. It becomes evident that
one of the fundamental operations is that of decomposing a matrix of rank
r into the sum of r Kronecker products of vectors. That is, if A 1is
an m by n matrix of rank r we would like to find the column vectors
{hi} and {gi} such thst

r
A= Zh.g!-
izt

This can also be written as A = HG where the ith column of H is
hi and the ith row of G is gi. It is in this form that the decomposi.-

tion is available in the machine,
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As described in Chapter I, the decomposition program at present gives
a decomposition only of nonnegative definite symmetric matrices. The output
provides matrices S and E where S is non-singular and E has r columns.

Then if the input matrix is B, we have B = SEE'S'.

But given this we can generate a decomposition for any matrix A. First
form AA' or A'A, whichever is smaller. We shall assume here that we have
AA'. This being nonnegative definite and symmetric, we can use the D E C OM
instruction to obtain S and E. Further we can use the P S EiU 0 instruction
to obtein A", Then A(AﬂA)' = anfp by axiom (i). However, A(AnA)’ - aarat's
SEE'S'A#'. Therefore if we take H = SE and G = (A#SE)' we have the required
factorization. If we had used A'A to enter DE C OM, then the selection
g-a''SE ¢ =E'S' would be used.

Notice that there can be no inconsistency about the rank of A as deter-
mined by D E C O M provided that if A'A and AA' have the same dimension
then AA' is used. The reason for this is that precisely the same operations

are perfommed in both routines. This will be made clearer in Section 3.

3. Computation. ILet B = AA' or A'A, This program uses Phase 2 of the
P S E UO computation, There a non-singular matrix T is computed such that
TET' = F where F is a diagonal matrix with elements O or 1. As indicated

in Chapter V, the diagonal elements of B 1in phase 2 are compared with a
number € and the algorithm reduction ceases when Bii <€ or rank r of

B 1is maximal. If the code (column 18 is blank) in the D E C O M operation
indicates that there is to be no iteration to compute the best decomposition
("best" as defined below), € will be the product of p; of PIZE R and

the maximum diagonal element, and the program will exit with the resultant

T and F. If colum 18 is a 1, € will be the product of the maximum B,
and P, (of the PIZER instruction). After B has been reduced as described

above
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0y = ey e (27w )" - ol ?

is computed and if this is not the first iteration, is compared against
pj-l'

If Py 2 Py12 computation ceases and the (j-l)st T and F are
the result. If pj < pj-l another row of B 1is reduced and the compari-
son made. Tais process will continue until the pivotal element is non-
positive or rank is maximal. An explanation of Py and P, is in order
at this point. P and p, are stored as ZLO"2 and 1, but both elements
can be changed by the PI Z E R instruction., If P, is made smallier most
of the reduction will be done the first time through the algorithm and there
will be fewer p computations thereby saving time. The obvious danger here
is that the optimal rank as defined by p will be bypassed. Py 1s a method
of changing the rank,

Now to conform to the output notation as it appears in Chap. 1, Fig. 1
let S = T-l. Then B = SES'. But E is idempotent and symmetric so
B = SEE'S' = SE(SE)'. But SE does not conform to the requirement that the
number of columns of SE equal r, the rank of B, except trivially when
r is maximal and E 1is the identity. If rank is not maximal, however, we
cén_delete the zero columns of E and call the resulting matrix Er without
affecting the product

— 4
B = SEr(SEr) .

It is also desirable sometimes to have a matrix P such that

PEP' = .

This is the same as having the first r rows of FEP? being linearly inde-

pendent and also the first r columns,
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The output to DE C O M consists of the matrices S, T, Ey» P,
E and the rank r of B in that order.

4, Checks: To illustrate DECOM we have used the matrix B appearing in
Check A of Chapter 5. In Fig. 2 is SE. In Fig. 3 is SE(SE) and in
Fig. 4 is TBT'. These results are quite good.

To illustrate the possibilities of the PIZER dinstruction we ran
this same matrix with p; = 1l and Py = 108. This gave a ra.nk8of oneg
p:L = 1 let it pivot only once before iteration began, p, = 10” guaranteed
that p would be larger for rank 2 than for rank one. SE, SE(SE)! and
TBT! appear in Fig. 5, 6, and 7.
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CHAPTER VI

THE I NV R S PROGRAM

1. Theory. Elementary row operations may be represented as premultiplica-

tion by nonsingular matrices, elementary column operations as postmultiplica-
tion by nonsingular matrices. Furthermore, the proper matrix may e con-

structed by performing the desired operation on the identity matrix.

In the Andre’ algorithm (see Chapter IV) we can obtain a pseudo inverse
of M if we have matrices, R, C such that RMC = E where E is a diagonal
matrix containing either zeros or ones. The matrices R and C can be

obtained by setting up the equation
IMI=M

reducing the right hand M to E by elementary operations and performing
the same row operations on the left hand identity and the same column opera-

tions on the right hand identity.

However if M 1is nonsingular, then M cen be reduced to an identity

by row (or column) operations alone.

It is precisely this procedure which the ASP I NV R S routine
(Share subroutine U A INV 1) uses. There is one interesting aspect,
namely that the identity matrix and the matrix to be inverted are both kept
in the same storage area, or rather that the matrix being inverted is systema-

tically replaced by its inverse.

2. Computation. Column 1 is searched to find the element mpl which is
largest in absolute value. The remaining elements of row p are each divided
by mpl; the reciprocal of mpl and the resulting n elements are stored
in eraseable storage in the following order:
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The Tirst row of the matrix replaces row P in the matrix, and a
record is kept of this replacement.

At this point, the only elements of interest in the original matrix
are those in rows and columns two through n., Row 1 (originally row p) has
been kept in sotrage and column one, rows two through n will be zero after

reduction.

Remembering then that i and J range from two through n, each
element m of the (n - 1)x(n - 1) submatrix is replaced by

m_,
m,. -m, .
ij il mpl
This reduced mij is restored in location mi 1, j-1° This process is carried
-1, j-
m,
on in row order and, at the end of each row, the quantity - Eié is computed
pl

and stored in the cell that formerly held mi 1. n*
=Ls

After this process has been completed for rows two through n, the
n elements 1) from eraseable storage are stored in those cells which originally

contained the last row.

Now to obtain an idea of what has been done, let us see what the last

column of the matrix is now

2) o T Ty 1 1
T, (XX ¥ o 'y m 9 sesy r.
pl Pl pl bl

But this column is, except for order, the pth column of the identity matrix
if we performed on it the row operations which reduced the first column of

M to all zeros except for a one in row P

The foregoing process is repeated n times, the only change being that

during the initial search for the largest element, the law row is ignored during
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the third reduction, etc, Notice that because of the one column shift,
the first column contains successively the first, second, etc., columns of

the reduced nmatrix.

Remembering that we worked first on the pth column of the identity
matrix, it becomes evident that after all the reductions are completed, the
row replacements that were made are examined and the corresponding columns
are interchanged. The result is now the inverse of the original matrix.

Except for the destructive compubation, this operation is very much
like the Andrée algorithm used in P S E U O. There are two very significant
differences. One is that P S E U O preserves and takes advantage of the
symmetry of the input matrix, hence we might expect to do a little better on
nonnegative definite matrices. Secondly, I NV RS wuses the largest element
in the first column to choose which now shall be used for reduction. In
PS E UO, the choice is made from the largest element on the diagonal., Thus
I NVRS seems to have a slight advantage. This selection of the largest
element to use in reduction is a purely numerical point and probably should be
made even more sophisticated. For instance in the check problem, all elements
in the first column are one, so I NV RS choose the last one it found. But

unfortunately the last row was the worst one to choose as the Xy equation.

It was actually rather surprising to find that P S E U 0 did a better
job than I NV R S. Probably more jnvestigation shouwld be done, but it appears
that PSEUO, with PIZER equal to zero, should probably be used to

invert nonnegative definite, symmetric matrices.

Care must be taken in using I NV RS because the only control in the
program is & test to insure that mij the new pivot element (largest element

. .th . .
in the j ~ row) is nonzero. If myy = 0 INVRS will return with an error

statement.

3. Checks. This being a Share subroutine, we did not feel that a great amount
of checking was necessary. However as a comparison we ran the 7 X 7T matrix
used in check C) for P S E U 0. The difference between. A{Jé and the inverse
as computed appears in Fig. 2. Notice that it is element by element, worse than

PSE UO + and that the computed inverse was not symmetric.
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CHAPTER VII

THE RICCATI EQUATION

1. Description of the Problem: Although ASP is useful for many purposes

other than optimization calculations, the majority of the methods are derived
from the calculus of variations. We are primarily interested in the so-called
"theory of the second variation", which is implemented computationally with

the help of the riccati equation. This chapter, much longer than the average,
constitutes a short textbook of the second variation together with a detailed

treatment of the riccati equation.

2. References: There does not exist at preseut a complete and modern treat-
ment of the theory of the second variation written primarily from the compu-
ting point of view. True, the computing aspect is emphasized in the papers
of Arthur Bryson (and also in the forthcoming book by Bryson and Y. C. Ho),
But Bryson eschews rigor to such an extent that in his exposition the

classical methods seem to be far more limited than they really are.

Almost all practical results of the calculus of variations are to be
found in the pages which follow. The general theory (vhich we discuss only
very briefly), is required to justify the passage from "linear" to "local"

but plays no direct role in the computations.

Good treatments, showing full awareness of the history of the subject,
may be found in

f1] J. Radon, "Zum Problem von lLagrange", Hamburger Matematische

Einzelschriften, No, 6, 1928,

[2] c. Carathe/odory VARTATTONSRECHNUNG, Teubner, 1975.
~J)
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Maﬁhematical research concerning quadratic variational problems is by no
means finished yet; in fact, this is a field of applied mathematics where
functional analysis can provide new insight as well as practical benefits.

See especially

[3] M. R. Hestenes, "Applications of the theory of quadratic forms

in Hilbert space to the calculus of variations", Pacific J.
Math., 1 (1951) 525-581.

Qur treatment here is the continuation of our expository article

[4] R. E. Kalman, "The theory of optimal control and the calculus of
variations", Chapter 16, MATHEMATICAL OPTIMIZATION TECHNIQUES,
edited by R. Bellman, 1963, Univ. of California Press.

[5] R. E. Kalman, "Contributions to the theory of optimal control”,
Boletin de la Sociedad Matematica Mexicana, 1960, pp. 102-119

which contains a detailed study of the riccati equation. The modern form of
the necessary conditions of Euler and Lagrange, the so-called canonical
differential equations of the calculus of variations, is given in the well-

known monograph

[6] L. S. pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and
E. F. Mishchenko, THE MATHEMATICAL THEORY OF OPTIMAL
PROCESSES, Interscience, 1962.

[7] I. M. Gel'fand and S. V. Fomin, CALCULUS OF VARIATIONS, Prentice=
Hall, 1963.

[8] M. Morse, CALCULUS OF VARIATIONS IN THE LARGE, Am. Math. Soc.,
1934,

[9] S. Sternberg, IECTURES ON DIFFERENTIAL GEOMETRY, Prentice-Hall,
196k,
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[10] R. E. Kalman, Y. C, Ho, and K. S. Narendra, "Controllability of linear '
dynamical systems", Contr. to Differential Egs., 1 (1963) 189-213.

[11] c¢. carathéodory, "Uber die Einteilung der Variations probleme von
Lagrange nack Kiassen", Comm. Helv. Mat., 5 (1933) 1-19.

(12] R, E, Kalman, "When is a Linear Control System Optimal?" Journal of

Basic Engineering, March 196k,

3, The General Optimization Problem: Consider the (differential or continuous-

time) dynamical system.
(3.1) ax/at = £(t, x, u(t))

where

t = time = real number;

»
]

state = real n-vector; (x} =,)(

u(.)

input or control function = continuous
function: t - u(t) = real m-vector; {u(.)} =@

f = continuous n-vector function of t, x, u.

The general solution of (3.1) is assumed to exist for all t and is

written as
x(t) = o(t; 7, x, ula))e

We wish to choose a control function u(.) for each initial state x

in such a way that the functional

v(t, x, T; u(.)) = (T, ®T;5 7, %, u(.)))
(3.2) T
+ [ L(t, oft; 7, %, u(.)), w(t))dt
t

is minimized over  subject to the condition
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x(1) = x,

(3.3) .
yi(T, oT; T, x, u(x)) =0 1=0, ¢eey 4 =0,

[ The second half of these conditions defines a boundary manifold ’6 , Wwhich
is a subset of {(t, x)}. Hence (3.3b) can be written also as (7, x(T)) € ol
If q =0, there are no constraints on x(T). DNote that T is implicitly

determined by (3.3b) .] We require also

(I.4) u(t) e M, te [r, Tl

We assume that f, A, L, v, are smooth functions. M is often (but
by no means always) a convex set and is sometimes also assumed to be compact

(to express the fact that the control signals are limited in amplitude).

[Tt mekes little difference theoretically but it greatly simplifies
our exposition if T = const., This we shall usually but not always assume.

Then Ty will be independent of T, and therefore/[g will be a subset of
L.

4. The Canonical Equations: It is well known that this problem is studied

with the help of the hamiltonian
(h"l) H(t) X, ¥, u(t)) = ﬂ*L(t) X, u(t)) + (Y) f(t: X, u(t))>:

where 1% = const., y = real n-vector, called costate, and ( , ) denotes

the scalar product,

According to the "minimum principle" of Pontryagin and his collaborators
[6], which is none other but the modern version of the classical "multiplier

rule”, we have the following necessary condition for optimality:
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THEOREM. A control function u*(.) and the corresponding trajectory

x*¥(,) can be optimael only if there exists a costate function y*(.) and a

constant n¥* such that the differential equations

I

ax/at = B (5, % ¥, u(e)) Y

(4.2)

dY/at - Hk(t: Xy, ¥» u(t))

are satisfied by x*(.) and y*(.) on te [t, T], n* =0 or 1, and the

"minimum condition"

(4.3) H(t, x*(t), y*(t), w(t)) = H(t, x*(t), y*(t), w), te [r, T]

holds for any ue€ M.

Moreover, the solutions x*(.) and y*(.) of (4.3) must satisfy the

boundary conditions

X

x(7)

(v, z)

(k)

n*(lx, z) if =z e ?%é(T, x(T)),

where 'T‘ﬁ(t, x) = tangent manifold of -£7 at (t, x). DNote that

ze T ,(x) iff Y;(X(T))Z =0, 1=0, ees, 4 501,

78

A triple or functions {x(.), y(.), u(.)} which satisfies Pontryagin's

theorem quoted above is called a pseudo-extremal. We reserve the superscript

* for winsmizing curves. It is by no means true that every pseudo-extremal

corresponds to a minimizing curve.

A pseudo-extremal is calleqd regular if n* = 1 and if for each
t e [t, t] the hamiltonian H(%t, x(t), y(t), u) has a unique (absolute)

(1) » By M, etc. denote partial derivatives BH/api, B)‘./axi, ete,
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minimum with respect to u e M (which then must be necessarily equal to
u(t)). Thus a regular extremal is specified by the pair {x(.), ¥(.)};
because u(.) is implicitly determined by x(.) and y(.) by (43) and

the requirement of regularity.

A pseudo-extremal is called an extremal if it has the following
property: If t', t"e [t, T] and [t" - +t'| is sufficiently small
there does not exist any input u(.) # u(.) such that

(1) x(t") = ¢(t"; t*, X(t*), u(.)),
t" ,t"
(11) ft,L(t’ %(t), u(t))at < ft'L(t, x(t), u(t))at.

Note that a pseudo-extremal merely satisfies a certain necessary con-
dition (recall that Pontryagin's equations are the generalization of Euler's
equations), while an extremal has the additional property that small pieces

of it are actually minimizing curves.

The main theorem of the classical calculus of variations asserts:

Every regular pseudo-extremal is an extremal.

By Pontryagin's theorem, the control function u(.) is optimal only

&

there is a pair (x(.), y(.)} which, together with wu(.), is a pseudo-

xtremal. x(.) is determined directly from u(.) wusing (3.1) (or the first

canonical equation (4.2a)); y(.) then exists for abstract reasons and is
generally not unique. Therefore having passed from u(.) to (x(.), y(.), u(.)},
it is not obvious whether "regularity" is an intrinsic property of the
"independent variable" wu(.) or whether it depends also on the choiee of

y(+)e It can be shown, however, that regularity is well defined independently

of the possible nonuniqueness of y(.).

It is not hard to prove [4] that regular pseudo-extremals satisfy

the free canonical differential equations

(o]
dx/dt Hy(t, X, V),

N
4

c .
Ul
~—

]

o
dy/at = H (%, %, ¥),
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together with the boundary conditions (k4.4), where we have set

(4.6) H(t, x, y) = min L(t, X, u)
uem

min L(t, x, u) + (y, £(t, x, u)).
ueM

This result is true if we make suitable smoothness assumptions concerning H
and the terminal set -7(3. Note that by regularity we have set = 1.

Equations (h.5) allow us to determine each regular pseudo-extremal
via the solution of a two-point boundary-value problem involving ordinary
differential equations., Thus the problem is reduced to exanining all solu-
tion of (4.5) which satisfy the appropriate boundary conditions and then
picking out those solutions (if there is one) which are actually optimal.
Using the canonical equations, we can get only necessary conditions; suffi-

ciency can be proved by adducing additional arguments.

5. The hamilton-jacobi equation: Under suitable smoothness assumptions, the

family of all optimal trajectories can be determined at the same time by

solving the hamilton-jacobi partial differential equation

(0] (0} O
(5.1) Ve *H (%, %, vx) =0

subject to the initial condition
(5.2) vO(t, x) = A(t, x) for (t, x) € Kf

Note the substitubtion of v; for y in H°. It follows that

T
(5.3) VO(T: x) = min [X(X(T)) + f L(t: x(t): u(t))dt])
ueE N T

(T, x@)) e 4J.
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The existence of a function satisfying (5.1-5.2) is a sufficient

(but in general not necessary) condition for the existence of optimal

trajectories, Moreover, our notations imply that H has a unique minimum

with respect to u, from which it follows that if V° given by (5.3)

satisfies (5.2), trajectory x(.) starting at x(7) =x is unique.

By slight abuse of language, let us henceforth call a regular pseudo-
extremal simply an extremal. (We shall be concerned solely with regular
problems, that is, the case where all pseudo-extremals are not regular and

hence, by the main theorem of the classical calculus of variations, extremals.)

6. The Accessory Variational Problem. ILet (x(.), v(.)} bve an extremal, i.e.

a pair of functions satisfying the canonical differential equations (%.5)
with arbritary initial values Eg, ;5. One can show by standard arguments

in the theory of differential equations see, e.g., [2]) that

1]

x(t) - X(t) = &(t) + ok, - X Il + lly, - ¥ ID

and

y(t) - y(t)

n(e) + olllx, =% I+ llvg - ¥,

where the functions &(.) and n(.) are determined by

: ) =0

dg/at = H (t + H (t

e/ L{e)e + H (8,

(6.1) - &

aas = B, (6)¢ - B (),
with initial conditions

£, =% "% o T Yo T Yo

The . :. n matrix functions iy (.), +.. are second partial derivatives
evaliss . along the fixed extremal (x(.), v(.)}. We assume of course that
F, L, . )\ are so smooth that K is at least twice continuously

differe-*+i-tle,
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Let us introduce the abbreviations:

F(v) = B, (t)  (amplies B (1) = F'(v))
(6.2) at) = £ (¢)
5(t) = a_ (t)

]
s
—
ct
g

L]

G(t)G'(t) "§y

The last step is legitimate only if we can show that B (t) is nonpositive
definite, This follows from minimality. (Note that G is not determined

uniquely by (6.2), but this fact will be of no in ®rest for us.) The proof
is as follows:

let c(t, x, y) be the argument at the absolute minimum of H

with respect to ue€ M for given t, x, y. Then

(o] .
H (‘t, X, y) = H(t’: X, Yy c(t) X, ¥))e

We fix t and write H° for HO(t, x(t), ¥(t)), x for x(t), ¢ for

— — . O —
c(t, x(t), y(t)), etec.; y will be a free variable. We regard H (t, x, y)
as a function of y and expand it by Taylor's theorem around y = 5. Thus
for any y we have the identity
5

- - -2 %
Ho(t’) X, Y) = + (ﬁ;: y - .V> + Glly - y“ﬁo

Yy

where 0 =6 =1 1is a scalar dependent on y. Since

H = f(t: }?) E))
y
it follows that
— o - - -
9(3’)“3’ = y“_o = H'(t, x, y) - H(%, X, ¥, ¢)
H
Wso
¥ The notation ﬂ&“i means? quadratic formm with respect to the wyiustric

matrix A,
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by the definition of HC. Hence H- _ is nonpositive definite. (If

o(y) = 0, then H(t, X, *) is linear and so |y - §“€o = 0.) Note the

similarity of our proof to the classical arguments assoc{¥ted with the

weierstrass "E-function".

Equations (6.1) characterize the situation near an extremal., We
shall now show that these linearized equations may be regarded also as the
canonical equations of a certain variational problem related to the original
one. Thus each extremal {(%(.), y(.))} will give rise to a so-called

accessory variational problem. To define this accessory problem, we must

say what f, L, A are and then we must specify appropriate boundary condi-

tions,

We will use the hat to denote the functions defining the accessory
problem, while the Greek letters §, m, p will correspond to X, Y, and

u in the original variational problem, We introduce the following defini-

tions
B(t, £, pt)) = F(t)e + &(t)u(t)
(6.3) o2L(t, &, p) = 62+ Il
3(t)
(s, £)= [el? .
S(t)
Then we find that
(6.1) oh(t, & m, w) = eI+ 2(n, F(o)e + Ge)w) + [l
Q(t)
and
(6.5) 2Bt €, n) = e+ 2(n, Fe)e) - IF (&)l
Q(t)

It is clear that the accessory variational problem is always regular.
(In other words, pseudo-extremals of the original variational problem which

are near & regular pseudo-extremal are regular in the first approximation.
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Of course, when the given pseudo-extremal of the original variational pro-
blem is not regular, we cannot define an accessory problem in the manner

indicated because then equations (6.1) have no meaning.)

Using (4.5) we can write down the canonical equations of the acces-

sory extremals:

dt/at = ﬁ‘]’i = F(t)& - G(t)G'(t)n
(6.6)
dn/at = ﬁz = - Q(t)e - F'(t)n.

Recalling our abbreviations (6.2), we see that these equations are the same
as (6.1). Hence we have a fundamental result which is the basis of the en-

tire theory of the so-called second variation:

THEOREM. The extremals near a (regular) extremal are obtained in

the first approximation by solving the accessory variational problem defined

by (6.1), (6.2), and (6.3).

Let us now specify the boundary conditions for the accessory problem
in the case when T = fixed. The terminal point must belong to the tangent
manifold of /Ag, hence

(6.7) A(T)E(T) = 0

where

(6.8)
A(T) =r(x(T)), T =

(By convention, A(T) =0 if q = 0, i.e., there is no constraint on x(T).)

On the other hand, (%.4) gives the constraint
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<ﬂ(T): z) = (g(T)g(T): z)

whenever A(T)z = 0; otherwise 1(T) is a free variable,

T. Digression on the Second Variation: Iet us give now a derivation of

the accessory variational problem, reminiscent of the way it was done in
the nineteenth century, The idea is to expand the functional

v(t, x, T; *) defined by (3.2) into a generalized Taylor series near a

given fixed value u(.) of the function wu(.). Thus one introduces the

"Pirst variation"
su(s) = u(.) - u(s),

2
and second variation & u(.), etc. The term the "second variation" asso-
R . 2
ciated with &7 u(.), turn out to be essentially the same as the V function
associated with (6.3).

Although these imprecise ideas can be given meaning using functional analysis
(see particularly [7], where a clear discussion of "strong" and "weak" first
variation may be found) this‘is not especially fruitful from a practical point
of wiew because it requires the apparatus of infinite-dimensional analysis,
whereas the main advantage of the classical theory lies in its ability to
treat finite-dimensional problems by fairly well-known methods. Since there
is monstrous confusion in the engineering literature concerning the use of
the purely symbolic first variation o&u(.) (see Bryson, loc. cit. in Sec. 2
for a careful treatment), it is of some interest to give here a rigorous
derivation of the "second variation" using only finite-dimensional analysis,
It is emphasized that this derivation is included mainly for cultural reasons,
since the analysis of the previous section has already shown why the c~ces-
sory variational problem is important in the study of local properties of

extremals
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We follow Carathéodory's treatment [2, §315-316].

In order to calculate rigorously the derivative of V with respect
to u(.), we assume that instead of infinitely many independent variables,
namely u(.), V depends only on the n-vector p. In other words, the
family of control functions {u(.)} = Q@ admitted into competition for the

minimum of V will be an n-parameter family, indexed by the n-vector p.

This is a very great simplification of the original variational pro-
blem; it is justified as follows. By regularity, our extremals (x(.),
v(.)} are at most of a 2n-dimensional family since they must satisfy the
canonical equations (4.,5) and are therefore uniquely determined by 2n
initial (or end) conditions in (4.5). But the transversality conditions
(4.4) impose precisely n constraints, so that the extremals may be indexed

by precisely o numbers, hence by the n-vector p.

‘ To show how p 1is actually determined, suppose the terminal surface
,44 has r = n dimensions (13 is embedded in the (ntl)-dimensional space
X X time). Since -ﬁﬂ is smooth, it can be parametrized by an r-vector
- upe The tangent space 1;&3 at (T, x(T)) is a linear space of dimension r;j
it follows from the transwversality conditions that the vector y(T) is the sum
of kx(p) and a vector Yeree? which lies on a linear manifold of dimension

n-r. We write y. = y(v), where v is an (n-r)-vector. Then

{7.1) p = (g, v).

(Consult [8, Chapter 2] or [9, Chapter 6] for a rigorous description of the
transversality conditions for parametrized terminal surfaces. Unfortunately both

authors restrict themselves to the ordinary (% = u(t)) variational problem., )
o R x(T), y(T))
and

¥(o 5 T, x(T), y(T)) ‘

are the solution functions of (4.5), we may consider both ¢ and ¥ to

depend on the n-vector parameter p by setting
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T=T(u), x(T)=x(), ¥(T)=>xr_(u)+y(v).

We consider x(t) = o(t; p), ¥(t) =¥(t; p) ult) = c(t, ®t; p),
V(t; p)) = w(t, p); after substitution into L, H, A, F, etc., everything
becomes a function of t and p only. Thus, with a slight abuse of

notation

(7.2) L(t, p) = Ho(t; p V) -, £2(t, o o))

Differentiating with respect to p we get
L =He+HY - (¥ £ o +£¥)- (v, f)
Xp ye xp up P

(7.3)

(, + Vg + (H - 0¥ = (¥, )

I

- <\y’ q)p>t‘
We have used the following substitutions:

Tx% " T = % = %t

they are true because ¢ and V¥ satisfy the canonical equations (4.5).

Along our n-parameter family of extremals the derivative of V

is given by

d T(p)
Vp(T) x, T; p) = SE[X(T<9): @T, p)) + / L(t, p)dtl.
{ T 7
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Using (7.3) we obtain

v, = xt(T)Tp + A.X(T)(pp(T) + L(T)Tp + (¥(t), CPp(t)) T(p)-

Using the transversality condition (4.5) this simplifies to

(7.1) Vo = Dy(m) + (DT, + (), o (v).

If T = const., this formula shows that the initial value of y must be

chosen in such a way that

Vp(T) x, T; p) = %‘VO(T: (Pp('t): T)

o)
= (V2(6), 9,());

in other words
~ O
y() ® v (7).

This is a well=known result; the substitution ¥y -avg was already encountered

in connection with the hamilton-jacobi equation.

The second variation of V dis now easily calculated. From (7.3) we

have
52
- Lpp = g?Eg(W, qb)
82
= 5;55<w, Qb>
= <Ilfp: ch> + <‘lfp) ch} + (W: q)pp)t’
or
- 2 2
(7.5) Lo = ”¢b“Ho - prHHo - a0y

XX vy
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.

The -last step follows by differentiating the canonical equations (L4.5)
with respect to p.

Using (7.5), we obtain the following expression for the second

variation of V:

(7.6) Vpp

2
Dg(2) + LTI, + 20, (T), T) + HTptht(T)

+

(¥(©), 9,,(e)

-+

5 T(p) " 5
qu(T)”kxx(T) + [T [qu)t;HHo ) HWp(t)HHO (t)ldt-
vy

The first two lines depend on quantities associated with the endpoints T and
T(p). The third line has the same general appearance as the accessory varia-
tional problem. We shall make this relationship precise in the next section;

we summarize the discussion so far as follows:

THEOREM., If the variational problem is regular, we may confine the

search for an optimal trajectory to the solutions of the "reduced" canonical

equations (4.5). Taking account of the boundary conditions, we are led to

consider an n-parameter family of solutioms of these equations. It suffices

to calculate the first and second variation of V along this family, since

ther trajectories are admitted into competition for the minimum of V.

o

no OO0k

This being so, the first and second variation of V may be computed

rigorously via ordinary calculus; the formulas for the derivatives of V

are given by (7.4) and (7.6). These formulas show that the derivatives consist

of two parts: (i) a part dependent only on the derivatives of various functions

at the endpoints 7 and T of a given extremal; (ii) a part (occurring in

Vpp only) which is the V function of the accessory variational problem.

Note that for the accessory variational problem (part (ii) in (7.6))

we may assume that T = const.
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The formulas we have obtained must be interpreted with some care.
For instance, in the ecngineering literature the term qbp(T) is sometimes
neglected as "small". This is legitimate in certain cases, but for different
reasons: Usually we wish to solve the problem for arbitrary initial x(T),
S0 that the initial boundary surface may be regarded as free. If we para-
metrize this boundary surface instead of the one at t = T, then we may
take p = x(7), so that qb(T)'= unit matrix and qbp(T) =0 (a three-
tensor). But this parametrization may be inconvenient because we have no
natural transversality conditions given at t = 7 (we would have to know
what V;(T) is) and therefore the boundary conditions at t = T may be
difficult to meet. For such reasons, it is usually more convenient to
parametrize the boundary surface at which there are nontrivial boundary

conditions, and in that case it is not true that qbp(T) can be neglected.

The particular choice of parameters adopted here will be useful in
our later studies. The reader should be clear, however, that the same techni-
que can be used to investigate V as a function of families of curves which
are not necessary extremals. In that case, we consider instead of (7.2) the

expression

L(t: p) = H(t) P ¥, u) - <‘1f; f(t; @ u))
where @ is a solution of %X = f depending parametrically on p since

(u(.)} is a family parametrized by p. 1In order for (7.3) to remain true,
we must assume that V¥ satisfies

(7.7) y=-H(t o v, 0);

then the previous considerations remain valid. If we take the family {u(.)}
such that

x = o(T; p)
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for all p, then we obtain a necessary condition for minimizing curve

as Vp = 0, This is the old-fashioned way of deriving necessary conditions.

We must emphasize that formulas (7.4) and (7.6) remain valid only
as long as VY satisfies (7.7); each parametrization will in general provide
a different V.

8. The General Quadratic Variational Problem: Most of our succeeding work

will be concerned with the solution of the accessory variational problem,

which is also called a quadratic variational problem. We wish to standardize

the notation as much as possible, and therefore we now repeat the definition

of this problem in a notation that will remain in use throughout the report.

A (continuous;time) quadratic variational problem consists of the

following:
(i) Dynamics. This is a linear differential system given by
dx/dt = F(t)x + G(t)u(t).

(ii) Performance index. This is the functional

2 T 2 2
V(t, %, 1) = ()5 gy * I Ur(®)ligrey * (o) lg ey lat.
(1) "7, (t)

(iii) Boundary conditions.

At t =T, x(t) = x (t = const.)

]
Il

const.).

c.*.
Il

T, A(T)x(T) = 0 (T

(iv) Assumptions., The matrix R will always be symmetric and posi-
tive definite (for regularity) and usually R=I. Q and S will always
be symmetric.

(v) Hamiltonian.

' 2
(e, 3, ) = Il * 2 ¥ - @l
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(vi) Canonical equations.

dx/dt = F(t)x - G(t)R‘l(t)G’(t)y,

- q(t)x - F'(t)y.

1l

dx/dt

(vii) Optimal control law.

u(t) = - R7H(6)a(t)y(s).

Remark. "Quadratic" means that L must be a quadratic function of
x and u (the t-dependence may be more or less arbitrary)., It may be
useful occasionally to consider cases where I contains a term of the type
u'Wx. Such problems can be reduced to our present problem by a simple
change of variables. See [12]. For most of our work we prefer not to carry
along this extra notation in the definition of L. In particular, the riccati
equation program is written under the assumption that the term W in I is

ZE€I0.

It is easy to show now that the last part of (7.6) corresponds to a

quadratic variational problem.

let Py = O be the parameter corresponding to the extremal
(x(.), ¥(.)} considered in Sect. 6. Write

£(t) = do(t) = g(t, p) - x(t) ¥ ¢ (t, O)o
n(t) = a¥(t) = ¥(t, p) - y(t) & ¥, (t, 0)e
w(t) = gu(t) = u(t, p) - u(t) * - o (t, 0)p

where = means correct "to the first approximation".

Differuntiating (L4.5) and making use of the abbreviations (6.2)

(but dropping superscripts, etc.) we obtain

b, = F(t)n, - 6(6)e*(t)y,
(8.1) :
Yo = - alt)e, - FI(t)y .
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In.other words, ®, and Wp are a pair of matrix solutions of the canonical
differential equations of the generic quadratic variational problem. (o
agree with the equations given under (vi) above we must set R = I.) In view
of this observation we introduce a special notation which is to remain in

effect throughout the report:
(8.2) x(t) = g,(8), ¥(t) =¥ (t).
Then we have

e(t) = X(t)p, n(t) = ¥(t)p, n(t) = - c'(t)¥(t)e

for each fixed p. Of course, @, = G'Y.

Then, if p = &(t), (7.6) shows that

(8.3) lec)lis

) > T 2 R
o = @Iy + 1 () + o) Pres

+ terms depending directly on T, T.

Thus the critical part of the second variation corresponds to the evaluation
of the performance index of a gquadratic variational problem along its

extremals.

We will see that the study of the accessory extremals provides con-
siderable informetion about the solution of the two-point boundary-value
problem; in fact, this aspect of our theory will turn out to be more impor-

tant than the somewhat pedantic emphasis on the second variation.

9. Solution of the General Quadratic Variational Problem: Quadratic varia-

tional problems can be solved explicitly with the help of the hamilton=jacobi

partial differential equation., In our case this equation is
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(9.1) Ve + (V,, F(t)x) - %IlG'(t)VXH;_l(t) + 3l = 0

subject to

2

)
s(T) for xe AJ.

(9.2) 2v(T , x) = |||
The hamilton-jacobi equation is easily solved in the special case when

(9.3) “ﬁ &= { (t, xj3 t =T = fixed, x =arbitrary"L.

In the remaining cases an indirect procedure must be used. One of our objec-
tives is a detailed explanation of the theory and computing procedure in the
general case when //(”2 may be a linear manifold of any dimension. For the

moment we shall consider only the special case when dim fﬁ: N.

It can be easily proved that when T = fixed, /,1{5 = % the hamilton-
Jacobi equation, as well as any first-order partial differential equation,
has a unique 02 solution (as long as \ is 02 and various other natural

smoothness hypotheses hold.) See, e.g., [2, §22l.
We will now exhibit this solution.

We assume that

(9.4) 2V(t, %) = [l ),

where P is a symmetric matrix.

In order that V given by (9.4) constitute the desired solution of
the hamilton-jacobi equation, it is necessary that

(9.1%) - dP/dt = F'(t)P(t) + P(t)P(t) - P(t)G(t)R”l(t)G'(t)P(t) + Q(t)

and that
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(9.2") P(T) = S(T) = const.

The first equation corresponds to the hamilton-jacobi equation and the second

corresponds to the initial condition of that equation.

Conditions (9.1'-9.2') are also sufficient, by the uniqueness of
solutions of the hamilton-jacobi equation. (Substitute (9.4) into (9.1) and
note that V satisfies (9.1) iff P(.) satisfies (9.1'). It is vitally
important for the understanding of this report that the reader be familiar
with all details of this particular substitution. No tricks are involved,

just matrix notation and a large amount of manipulation.).
We have then the
THEOREM. The special quadratic variational problem is solved if and

only if the riccati equation (9.1') has a solution II(.; T, S(T), Q(.))
defined for t = 7,

Note that since (9.1') is a nonlinear differential equation (the quad-
ratic term is essentiail) it may be subject to the phenomenon of finite
escape time, namely a solution may be defined on an interval (¢%, T] and
as t ->t' P(t) =]I (r: 1, s(7), Q(.)) »» (at least one element of
P >o)., Then t =t' is called the (left) conjugate point associated with

-

T, If T = t', then the solution of our problem does not exist, because
(proof later) then V(7, x) can be made arbitrarily negative by suitable
choice of wu(.). This obviously cannot happen if both S and Q(.) are

nonnegative definite,

The main objective of the theory of the second variation is to in-
vestigate the existence and nonexistence of conjugate points, as a funcﬁion
of Q(.), S, the boundary conditions, etc. In the course of this theoretical
investigation, we will obtain explicit formulas for the solution of the riccati
equation (9.1'). We will also see the role played by controllability in fhe

investigation of conjugate points.
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Our considerations are motivated by the roughly correct fact that when

no congjugate point exists, the necessary conditions leading to the canonical

equations are also sufficient for optimality. In other words,

{extremal + no conjugate point} = {optimal trajectory).
We will give a precise discussion of this result, the most important theorem
of the classical calculus of variations. The theory surrounding this result

also motivates all methods of numerical computation of extremals.

10. Theory of the Riccati Equation Associated with a Quadratic Variational

Problem: The general form of the matrix riccati equation is
dX/dt = AX + XB + XCX + D.

We will not be concerned with such complete generality (whose theory is
similar to the case we shall treat) but will deal exclusively with (9.1%).
The theory of this equation is very closely related to the theory of the

canonical equations.

The solution of the canonical equations is equivsalent to the solution

of the riccati equation, provided no conjugate point exists.

We consider first the special problem.

As before let the pair (X(.), Y(.)} be a matrix solution of the

canonical equations, that is.

ax(t)/at = P(£)X(t) - G(£)R™I(+)a" (+)x(t),

(10.1)

ay(t)/at = - Q(£)X(t) - F'(t)¥(t),

and specify the initial conditions as
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“x(T)

I
H
-

(10.2)
¥(T)

It
[6p
L]

We say that T has no conjugate point (in the special problem) if
det X(t) # 0, t <T. Then we claim

THEOREM. If T has no conjugate point, the solution of the special

(10.3) 2v(s, %) = Ixllprg) = Ilypyx-e)y © = T

Proof. We must show: If the pair X(.), Y¥(.) satisfies (10.1)
with initial conditions (10.2), then P(.) = Y(.)x'l(.) is a solution of
the riccati equation (9.1'), with initial conditions
P(T) = H(T)X‘l(T) =s17t = s.

This is proven by straightforward but tedious substitions, which the
reader is again strongly urged to carry out for himself. Similar manipulations
occur frequently in deriving the riccati equation for various problems.

Note that our definition of the "nonexistence of a conjugate point"

is precisely that necessary and sufficient for the important formula P = Y_X-l

+to make genge
CO make gense,

Our theorem admits the following converse:

THEOREM. If the riccati equation (9.1') has a solution defined on

[tr, T], then there is no conjugate point in this interval, that is,
det X(t) #0 for t e [r, T]. (Of course X(.) is defined via the initial
conditions (10.2).)

Proof. If the riccati equation has a solution, then {recall Y =1V_)

X
the optimal control law is given by
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u(t) = - R7H(8)6" (£)¥(t) = - RH(4) (6)P(t)x(t).

Therefore the optimal motion x(.) satisfies
(10.4) ax/dt = Hy = [F(t) - R™(t)6"(+)P(t) kx.

We want to show that X(.), which satisfies (10.1-2), is equal to (., T),

the transition matrix of (10.4), that is, of the optimal closed-loop system.

Then the theorem follows, because transition matrices are never singular,

We define

X(-) = (D(', T):

Y(.) = P(.)X(.).

]

Then X(T) =I and Y¥(T) =8; moreover, the pair (X(.), Y(.)} satisfies
(10.1). The latter fact is shown by direct substitution into (9.11') and
(10.4). This is the third type of substitution which the reader is urged to

carry out.

In the general problem the procedure we have used here to relate the
riccati equation to the canonical equations (and to relate both to questions
concerning the existence of a conjugate point) requires much more delicate
arguments. These will be discussed in the remaining parts of this chapter.
Before doing so we wish to establish two important properties of the riccati

equation:

A, Exact interpolation formula., Although the digital computer cannot

compute P(t) continuously in t, we can give a formula which expresses P(t)
exactly for any fixed t in terms of the initial values X(T), Y(T) of the

canonical equations.
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Let © be the transition matrix of the canonical equations; i.e.,

® satisfies

[~ - i" =
F(t) - G(t)R"l(t)G'(t) e, ©,
d6/dt = .
-Q(t) - F'(%) 6,1 95

Then

P(t) = [921(1:, )X (T) + @22(1:, T)Y(T) Ix

(10.5) -1
X [@ll(t, T)X(T) + @lét, ™y(™ 1 .

In other words, to find explicit solutions of the riccati equation we require
no more and no less than an explicit transition matrix of the canonical equa-

tions. This observation is the most important principle in the entire ASP

computing procedure,

Although the right-hand side of (10.5) does not appear to be symmetric,
it is known abstractly to be so if P(T) is symmetric. For if P(T) = 8 is

symmetric (which is always assumed, then by (9.1') P(T) = symmetric.

This is very important practically; for if P become unsymmetric due
to numerical errors, the errors may propagate and lead to difficulties of
various sorts. The user of ASP should always check whether the assumption
of symmetry is needed in the derivation of equations to be computed. (The
riccati program contains an extra operation which assures that the output is
always symmetrical. This is desirable to impede error propagation due to

asymmetry. )

One can also show by direct algebraic arguments that the matrix (10.5)

is symmetric whenever
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(10.6) Y(T)x‘l(T) = symmetric.

Condition (10.6) plays an important role in the general problem,

B, Symplectic character of @. Iet

(10.7) z and J = (T =0 =-27).

l_ Y “Tn On

1l

A system of differential equations

(10.8) dz/dt = A(t)z

is said to be hamilgggigg iff it can be written as

dx/at = Ho dy/dt = - H,

where

H=z'M(t)z

and M(t) is a symmetric matrix. Tt is easy to show that (10,8) is hamiltonian

iff JA(t) = M(t) = symmetric matrix. Our canonical equations (8-(vi)) are of

course the principal example of a hamiltonian system,

A matrix X(t) is called symplectic iff x'l(t) = JX'(t)J. A
symplectic matrix cannot be singular; in fact det X(t) =1, If X is sym-
plectic, so is its inverse; if A, B are symplectic, then AB is also
symplectic. So symplectic matrices form a multiplicative group., "Symplectic"
is similar to "orthogonal" and has interesting geometric interpretations (for
which see Mal'cev, LINEAR ALGEERRA).
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We are interested in symplectic matrices because of the following
well-known result:

THEOREM., The transition matrix of a hamiltonian system is symplectic.

Proof. If ©(t, T) is the transition matrix of a hamiltonian system,

then
ae/at = - ()8, M(t) = symmetric.
Iet T(t, T) = ©'(1, t) be the adjoint of ©., Then ' satisfies
ar/dt = M(t)J'T
or
afaral/at = - m(t) [a'ral.

Since J'M(t, t)J = J'T =TI, J'TJ is a transition matrix; and since it

satisfies the same differential equation as @, we have
-1
Jre'(t, t) J=6(t, v) =0 (1, t).
Iy . \
So ©(t, t) is symplectic and therefore also © “(t, t) = 8(t, T). Q.E.D

Using the fact that © 1is symplectic we obtaln the identity

T‘@M(t, T) ®l2(t, 'r)— @éZ(T, t) - ®i2(T’ t)—l
@('t, T) = = .
@ZI(t’ T) 922(t; T) . -®él(T’ t) @]’_l(T) t)
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Later it will be useful to know:

PROPOSITION. Iet ({X(.), ¥(.)} be matrix solutions of the linear
equations (10.1). If

X()Y(t) = YH(t)x(t)

for some t =T, then the same relation holds for all +.

Proof. Write

1l

X(t) ®ll(t) T)X(T) + ®12(t: T)Y<T)

Y{t)

il

®21(t) T)X(T) + 622(t) T)Y(T)'
Then,

X (t)¥(t) = x*(v)ey, (t, 1), (¢, 7)X(1)
+Y(r)e; (8, 7)8, (8, T)X(T)
+X'(1)e], (¢, 1), (t, T)¥(T)
+Y'(7)e],(t, 7)e,(t, T)¥(T).

Now

. 3 .
@ll(t, T)Cél(t, T) = Cbg(T, t)Cbl(t, T) (by symplectic)

]

Cél(T’ t)C&l(t, T) (composition property

of transition matrices

. i
Cél(t’ T)Cil(t’ T) (by symplectic).

The other terms may be rearranged similarly. Thus a term-by-term comparison

shows that the proposition is true.
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Similarly)\we can prove that P(t) given by (10.5) is a symmetric

matrix iff P(t) = h(T)x'l(T) is symmetric.
i

11, n-Parameter deilies of Extremals: ILet p be a constant n-vector.

Given any matrix pair (X(.), ¥(.)} satisfying (10.1), we define an
n-parameter family of vector solutions of (10.1) by setting

X(t)e

£(t)

n(t) = ¥(t)e.

(We are applying the considerations of Sec. 7 to the general quadratic
variational problem. According to the preceding theory every extremal of a

quadratic variational problem must be of the form (11.1).

Conversely, we may ask the question: Is every pair (e(.), n(s)} of
solutions of (8-(vi)) a (regular pseudo-) extremal of the associated quadratic

variational problem?

The answer is well known to be NO. There is no difficulty in satisfy;
ing the minimum requirement (4.3) (since Ut is a function only of y and
since the relation ubpt(t) = - R'l(t)G'(t)y(t) has been built into (10.1)).
However, there is an additional constraint imposed by the transversality

conditions (L4.4).

PROPOSITION. An n-parameter iamily of solutions of (8-(vii)) defined

by (11.1) is a family of extremals of a quadratic variational problem if and

only if

(11.2) x'(T)¥(T) = ¥Y'(T)X(T).

In view of tne fact what {3-(vi)) is a hamiltonian system, relation (11.2)
guaraitees that ¥'(t)¥(t) = Y'(t)X(t) for all *t.

Proof. The transversality condition imposes on X(T) and Y(T)

the requirements
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(11.3) A(P)X(T)p = 0 for all p,

(1L.4)  (¥(T)p, z) = (s(T)X(T)p, z) for all p and all z satisfying A(T)z =

Therefore any row vector of the type

z* [Y(T) - s(T)X(T)]
is zero; since by (11.3) X(t)p = z satisfies A(T)z = 0,
p'IX'(T)Y(T) + X" (T)S(T)X(T)] = 0

for all p, which proves (11.2),

We will now derive a canonical set of coordinates which will enable
us to state the constraints (11.3-L4) in a particularly simple form. In other
words, we branslate the transversality conditions into a specification of the
pair X(T), ¥(T).

Iet n -r be the rank of A(T) (hence r = dim %3). By changing

coordinates we can exhibit A(T) in the canonical form

(11.5) A(T) = [0 1,1l

I.E., we rotate the terminal manifold /{3 so that it is given by
Tl(X) =Xl=0, i=l, coey e

al
Then x can be written as (xl, x7), where x is an r-vector and x-

is an (n-r)-vector; x belongs to the terminal manifold iff x° = 0. As

in Sect. 7, we parametrize the terminal manifold by the r-vector p. Then
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1
x - belongs to thel terminal manifold iff x = (u, O). p must be part of the
}
parameter p whigh determines our n-parameter family of extremals., Hence we
set (cf. Sect. T)

p = (H: v)e

Let us determine the special form of the matrices X(T) and Y(T)
in the coordinate system introduced above, writing them in such a way that

the condition (11.2) is automatically satisfied.

Since‘xfﬁ is to be parametrized by p and since every x(T) = X(T)p
must belong to ,4K;, ice., x(T) = (u, 0), it is clear that

T

X(T) .

Condition (11.4) shows that

fou o

\

Y(T) =

~ it

w
Q

where B, C are arbitrary matrices. We set X = SHH for the sake of a simpler

notation., Then
y(T) = ¥(T)p = (Swu, Bu + Cv).

The second term is an arbitrary (n-r)-dimensional parameter. We lose no

generality if we set B =0, C =1I. Thus
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Y(T) = .

It is clear that (11.6) and (11.7) define the most general n-parameter family

of solutions of (8-(vii)), which are extremals.

12. Two Important Formulas: To complete our discussion of the parametric

representation of extremals, let us calculate the optimal performance index,

The first formula is
T T
(12.1) J Lt &(t), u . (6))at = (&(t), n(t))] .
opt
t T
To prove it, write

L(t, x, u ) = EHO(t, X, y) + ”G'y”2 - 2y'Fx.
opt R-l

By homogeneity of HO,

g 2
L(t, x, ubpt) = Hx + Hyy + ”G'yHR_l - 2y'Fx

Using the canonical equations we get

1

L(t, x, u = = x'y + y'% - 2y'"(Fx - G'R” Gy)

Pt)
= - .V’X):

which proves (12.1).

Now suppose that det X(T) # 0. Then we can write the right-hand
side of (12.1) as a function of p, as follows:
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e(t) = X(t)e

= X"Hx) (1),

he]
I

On the other hand,

(e(1), n(t))

X' (T)Y(T)p

s

by (11.7). Thus (12.1) becomes

T
2 2
(12.2) lullg + f L(e, &(%), uy(8))at = [le()]] a1
T Y(7)x7(7)
which is our second important formula.

Suppose now that we have not merely det X(t) 74 0, but

(12.3)

det X(t) # 0 for all [r, T).

Then according to Sect. 10 we know that Y(t)x'l(t) satisfies the hamilton-
jacobi partial differential equation on the interval [t, T). (Note that
the right endpoint T =t is not included in this statement since X(T) 1is
igular when r < n.) But the existence of solutions of the hamilton-jacobi
equation is a sufficient condition for optimality. Hence we have our

FIRST MAIN THEOREMS:

If an n-parameter family of extremals satisfies
(12.3), then X(.)p

is an optimal trajectory for each p.

We now embark on a detailed investigation of the conjugate point con-
dition (12.3).

Tt should be remarked right away that (12.3) is not a
necessary condition for optimality; the degree to which it fails to be optimal

is related to the controllability properties of the family of extremals,
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12. The Boundary-Value Problem: ILet us return now for a moment to the

original (not accessory) variational problem, If this problem has a
solution in terms of a (regular pseudo-) extremal, then this extremal
must be detemmined using the free canonical equations (4.5). This means
that we must know either the two initial conditions, x(7v) and y(7) or
the two final conditions, x(T) and y(T). x(t) is given as part of the
specification of the problem, while y(7) must be determined by solving a
so-called "two-point boundary-value problem"., Usually neither x(T) nor

v(T) is given.

Iet us consider some typi. . examples. Recall that o(t; 7, x(1),
y(t)) and Y(t; 7 x(v), y(r)) 4is the solution pair of (4.5) corresponding

to the initial values x(7), y(1).

) ™y
(1) The endpoint is free, i.e., —f)= jé_. Then we must satisfy

the condition (cbtained from the transversality condition)

(15.1) y(T5 7, x(7), y(1)) = y(T)

XX(T, x(T))

il

A (T, oI5 7, x(7), ¥(1))).

This is an implicit relationship which determines y(v) as a function of
x(7). Once y(T1 is determined. the extremals can be computed by (4.5).

If (13.1) has a solution, xc{T} and pO(T>, i.e,, 17 we have determined

a particular extremal*, then using the implicit function theorem we car

sclve (12,1) provided the relevant jacobian is # 0. This jacobian can

Tes owos o ontTrvenT Tlems . - enling on the variables which are designated
as unknowns. In our present case, L. 1s ccuveniert - choose not p(T)

but x(T) as the unknown. Then we get the conditic:
(13.2) o7 T, x(T), A (T, x(T))) = x(z°

(equivalent to (13.1)), from which we are to determine x(T) as a function of

x(T). It 1s well known in the theory of differential equations that the jacobiar

¥
We may do this as followst We pick x(T) arbitrarily, set p(T) = (T, =x(T))
and then integrate (4.5) from T toward =. x
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Bxi('l') 4

e | Xij(T)J

where X(.) is that solution of our canonical equations (10.1) which corres-

onds to She given boundary condition and £ = A __. La 0 er wovlis, She iocal
Y gy D SL Ty 2B SURes

solution of equation (13.2) (in the approximate sense, considering only the

linear term in the taylor series of the left-hand side of (13.2)) requires
kn wledge of the solution of the accessory problem, Moreover, a sclution
is possible if (usually also only if) det X(7) # O. So we see that the

conjugate point condition is closely related to the solution of the "boundary -
value problem”" (13.2).

The engireering literature contains many mislcading stabements con-
cerning the solution of the boundary-value problem., In effect this problem
is merely a part of the classical theory of the accessory problem, We hasten
to add that the entire theory is local. (If one had any mathematical idea
concerning the global solution of the Tceuac oy-valin problem, that would be
nearly as much as a theory of the global accessory problem, that is to say, a

global theory of the original nonlinear variational problem, )

The choice of t =T as the starting point for the solution of the
canonical equations (10.,1) is quite arbitrary., We =~uld have started also
at t = T. Which of these choices is more sensible depends on the practical

features of the problem,

Iet us illustrate what would happen in the second case. (We let T
play the role of T.)

§2)  The endpeint is completely constrained, te, D = {0}, Now we

nmust satisfy the condition
(13.3) 73 T, 0, y(T)) =x(7).

In this case y(T) = free., The jacobian is again given by
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(X suitably defined).

Both (13.2) and (13.3) can be expressed by a single formula with

the aid of our parametrization. Thus in the first example we have that
(x(1), A (T, (1)) = (u, =)
and in the second case
(0, y(T)) = (0, v).
In the general case, we have

(13.4) (x(T), y(T)) = (X(T)o, Y(T)o).
This gives our

SECOND MAIN THEOREM: The jacobian matrix

(5

35

of the genersl variational problem is given by the corresponding matrix X(T).

An important reason for our parametric representation of extremals is

to have a simple expression for the jacobian.

14, Two Important Lemmas: Now we wish to investigate the necessity
of the condition (12.3).
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It is clear that if this condition is not satisfied, then the pro-
blem is not well posed. For if det X(tl) = 0 for some t, € [x, 7),
then it is impossible to connect some point (tl, gl) with the terminal
set ,_vd eXtremal.ly, i.eo,

¢, 4 range [x(v))).

However, even in this case it is conceivable that we might be able to con-
nect a point (tl, gl) with the terminal set‘ﬁés in some nonextremal and
therefore nonoptimal way. It turns out that this is not the case. In other

words,

{reachability of terminal surface} = {optimal reachability}

provided there is no conjugate point in the interval v, t).

Iet us now make these notions precise,

LEMMA 1, If X(to)pO = 0 for some p =p = (o, vo), v # 0,
£(t) = X(t)po #0 on [to, T) iff the boundary value problem is well posed
over the interval [to, 7). [That is, given any state x there is a control
u(.) which connects (to, x) with (T, z), ze€ ,fﬁ.]

Proof. Suppose &(t) = X(t)p

il

0 on [to, T)., Then
n=-F'(t)n.

This equation can be explicitly solvedj the answer is
n(t) = o*(T, t)¥(T)p .

Then, since X(T)p, = (n,, 0) = 0, the equation

E = P(8)g - G(6)RTH(1)G(8)eN(T, £)X(Te,
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has the solution

T
[ o(T, £)G(HR™(t)e" (t)o* (T, t)atlx(Tlo,,
t

o}

W(T) tO)Y(T)pO,

e(T) = o(T, t,)&(ty)

0.

W(T, t,) is the reachability matrix; a point (T, z), ze€ 461s reachable
from (to, x) iff =z - &(T, t )x € range W(T, ) (see [5]). That is,

X = @(to, T)(w +2), we range W, z € «%5.

Thus the problem is well posed only if

(14.2) range W +’(3= x .
Now (0, v ) L 7.

On the other hand, (14.1) and (11.7) show that

WY(”‘)p =W(0, v ) =0

so that (0, v ) € null space W. Since W is symmetric, this means that
(o, vo 1 range W. Hence (0, v ) L [range W + ‘f\jﬁ] and since v #0

we have a contradiction to (lh.E). This proves Iemma 1.

If the hypotheses of the lemma hold, we say that to is a conjugate
point (precise definition) of T. According to the lemma, a conjugate point
is characterized by the fact that at least two distinct extremals connect
the points (0, t,) and (0, T). £(t) = 0 is always an extremal; it corres-
ponds to p = 0. By the lemma the extremal g(t) = X(t)po is distinct from
t(t) = 0.
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If det X(to) # 0, we may have also the case where X(to)p =0 and
Py = (uo, 0), po,% 0. 1In this case the extremal E(t) = 0 is obviously
different from £(t) = X(t)p  because x(T) = (pgs 0) # O. When there is a
Py with the latter properties, we say that to is a focal point (precise
definition) of T, Slightly imprecisely a focal polnt may be regarded as a
generalization of a conjugate point and includes the latter as a special case,

The optical intuition leading to the term "focal point" should be quite clear.
Another definition of the focal [conjugate] point is: there exist two
distinct extremals which terminate at x(to) =0 [and begin at x(T) = 0l.

]
In view of our lemma, this is equivalent to the statement: there exists a

Ps #0 e, # 0 with v, # 0] such that X(to)po = 0.

IEMMA 2. Suppose that the boundary-value problem is well posed over

any interval [t, T), 7 <T. (Refer Lemma 1 for detailed statement,) Then

there is no focal point in [T, T) if v is taken to be sufficiently small.

Proof. If there is a focal point at t = T, then there is a p_ #0
such that

x(1) = X(v )pO = 0.

Iet Y. be the extremal which corresponds to p_. In view of formulas

o o
(1%.1-2), it is clear that the performance index V along vy  1is zero
(since g T) = 0).
Now we define the scalar function

(14.3) v(t, x) = el

) g P(t)
by letting P(.) be given by (10.5), where

T 0\ =0
X(T) = , X(T) = .
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It is clear that P(t) will be well defined (will exist) for + near T
because det X(T) = 1 and therefore by continuity det X(t) #0 for +
near T. According to the theory discussed in Sects. 5and 9, V is a
solution of the hamilton-jacobi equation corresponding to a new variational
Problem P2; P2 is the same as the original problem P, (for which there
exists a focal point) except for the fact that the boundary surface for P2

is ,./«.-j= ¥ . Hence Yo is an extremal also for P, because it satisfies

2
the boundary condition (trivially) for P,. So the performance index V

for T, is O also for P2.

The function V defines a unique control law, which is linear,
Hence in P2 the optimal trajectory To starting at x(t) = 0 is the curve

identically zero. Along this curve the performance index is obviously zero.

By Carathéodory's lemma (see [4]) the existence of a solution of
the hamilton-jacobl equation implies that the optimal trajectories are unique.
Both LR and T, are optimal because their performance index is 0., We

have a contradiction to uniqueness.
This completes the proof of the lemma.
We note also the

COROLLARY., Under the hypotheses of ILemma 1, the focal points of T

are isolated,

Proof. If not, let [to, tl] be an interval of focal points.
Since X'(tl)Y(tl) is symmetric, we can repeat the analysis of the lemma,
choosing tl as T. Then the lemma shows that there are no focal points

in the interval [7, tl] if T is near t,. Contradiction.

Notice also that our proof of Lemma 2 implies the

FROPOSITION. If tl <T 1is the focal point nearest to T in pro-

blem Pl and t2 is the analogous focal point in Pg, then t

< I8
l 55 ) T le
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15. Summary: We can now state our final result, which shows that the
computational treatment of the general boundary conditions is identical with

the treatment of the special case when x(T) is free

THIRD MAIN THEOREM. Assume that the boundary-value problem is well

posed over any interval [t, T) (where t € [r, T)) and that T is chosen

so small that no focal point exists in the interval [t, T) (that is,
det X(t) #0 on [r, T)).

Then the soiution of the general problem may be obtained using the

function V defined via (9.4) by P(t) which is given by (9.1'), where
X(?) and Y(T) are determined by (10.1) and (10.2). This choice of initial

conditions for (10.1) assumes that the terminal surface consists of the first

r of the n (or‘thogonal) coordinate axes. The function V so _computed

satisfies the relevant hamilton-jacobi equation for all t € [t, T); if
t =7, then V(T, x) = Hx“é on @.

The statement: "the boundary-value problem is well posed over every

interval [t, T)" is satisfied, e.g., when the system (3.1) is completely
controllable over every such interval., Our italicized statement is in fact
equivalent in classical tevminology to the statement "the problem is normal

in every interval'.

theory can be carried out without such an assumption, as follows.

Suppose the problem is well posed merely with respect to the fixed
interval (v, T). Consider the linear space I'(t) of all points (%, x)
from which //3 may be reached at t = T. By definition of "well posed at
t = 1" we have that I(t) = # . But for t >7T TI'(t) may be a proper sub-
space of f .

By the theory of controllability, it follows very easily [10] that
Dim I(t) is a piecewise integer-valued function, which cannot be decreased as
t - T. Moreover, there are but finitely many intervals on which this func-

tion has different values (because % is finite-dimensional). Hence let us
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subdivide [tv, T] into maximal disjoint intervals on which dim I'(t) = constant.
Bach intecrval is cleszd on tne left and open on the right. We repeat the

entire analysis (which is quite independent of the specification of the initial
state x(7): all of our analysis holds for all initial states for which the
boundary-value problem makes sense) for each interval, Pubtting together the

bieces, we get a result analogous to the third main theorem.

The possibility o such a prucedure was pointed out a long time ago by
Carathéodory [11], but his formulas are not explicit, contain some mistakes
(rectified in Chapter 18 of {21), and are not easy to read. Our present treat-
ment is similar to Caratheodory's exposition of fhe theory of "second Variation",
[2, Chapter 15 ] which was concerned solely with the simple variational pro-
tlems (¥ =0, G =_1). As the reader has seen, the Hamilton-Jacobi-
Carabhéodory-Bellman approach can give us the solution of the most general pro-
blem, and has the advantage in addition of yielding a single formula, (9.4),

which covers all computing problems,

It is hardly necessary to peint out that the theoretical part of our
investigation is completed by applying the theory of the accessory problem
to the formulas developed in Sect., 7. Most of the classical sufficiency proofs
of the calculus of variations are done in this style. We omit the details,

since they have no bearing on the computational problem.,

16. Computation: The transition matrix for (10.1l) can be computed

easily only when all matrices are constants. In that case

(16.1) e(t, 7) = expl(t - 7)zZ].
where
F - ar™lg!
Z = .
-Q ~F

The program is supplied with (16.1) and then computes P(t) by substituting
the four submatrices of © into one of the formula (10.5). In this way one

obtains a stepwise solution of the riccati equation.
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At each step P 1is symmetrized before proceeding by replacing it
with

P(t) + P'(t)
5 .

Symmetrization is absolutely essential because otherwise uncontrollable

roundoff errors may accumulate in the antisymmetric part of P(%).

The input to the program consists of the matrices O, R-lG, a
symmetric P(T), a sampling period T at which intervals P will be com-
puted, a convergence criterion number €, a final time TF, and various

printing codes.

The problem is terminated in one of two ways. Either the final time

TF dis reached or the convergence criterion is satisfied.

The convergence criterion is that

% lpg (b + 1) - pyy ()]
i=1l

n

Z eyt + T
i=1

be less than the input number €,

when P(t) is computed, the matrix
-1,
K(t) = RTG'P(t)

specifying the control law can be computed and printed. Print controls en-

able one to print K or P at every N steps and at the final step.

17. Checks: A) The Program was run with




where 06 = six dimensional zero column vector and 16 = 6 x 6 didentity
matrix

1
G = , Q=H'H=7X 7 matrix
0
6
L
R = [0.6075]
P(0) = 0.6075 I,
T=-Oo2.

This was iterated for ten steps and the result compared with a hand-
computed result expressed exactly in four place decimals. P appears in Fig. 2,
The hand-computed P is :

0.2025 0.4050 0.4050 0.2700 0,130 0.0540  0.0180
0.4050 1.4175 2.0250 1.7550 1,0800 0.5130  0.1980
0.4050 2.0250 3.8475  4.1850  3,1050 1.7280  0.7650
0.2700 1.7550 L4.1850 5.8275 5.4450 37170  1.9680
0.1%0 1.0800 3.1050 5.L450 6.6375 5.8410  3.87%0
0.0540 0.51% 1.7280 3.7170 5.8410 6.8319 5.9178
0.0180 0.1980 0.7650 1.9680 38730 5.9178 6.8623

B) The Program was run with
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6
F = H=1[1 0]
-I6 06
=1 .
G=R"=7XT 2zero matrix
Q = 2.0250
P(0) = - 0.2I

This was iterated for ten steps and the results compared with a hand-
computed result which was expressed exactly in four place decimals. P

appears in Fig. 3, K 1is of course zero. The hand-computed result is?

vy

r2.69 3%  -=1.9759 1,2990 -0.6720 0.2790 -0.0900 0.0180
-1.9750 2,289 -1.9710 1.2870 -0.6480 0.2430 -0.0540
1.2990 -1.9710 2.2725 -1.930 1.2150 -0.5400 0.1350
P =10 10,6720 1.2870 -1.9350 2.1825 -1.7550  0.9450 =0.2700
0.2790 =0.6480 1.2150 -1.7550 1.8225 -1.2150 0.4050

-0.0900 0.2430 -0.5400 0.9450 -1.2150 1.0125 -0.405%0

0.0180 -0.054%0 0.130 -0,2700 0.4050 -0.4050 0.2025

C) To obtain a problem whose answer we knew for all time, we ran the follcw

ing

F = diag (.1, .2, .5, 1, 2)
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r.l o2 . . .5_

3 in
.2 .2 o .5 .6
H'QH = | .3 L .3 .6 7
o .5 .6 o .8
5 .6 .7 .8 5

GR™G! = 5 X 5 zero matrix = P(0).

P was computed at various times, we show in Fig. 4 and Fig. 5 the
computed results at t = .75 and t = 3.7. The answers are accurate in

the seventh significant figure. The correct results are

() e(xi + A0t N

_ J
Piy Ty T o .
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RICAT

Select
Matrices

PO, PH,C,D
PC, and/or ¥

Determine
storage for
P(T), K, AL

Partition PH
such that

1 %2

PH =
Po1 Pz

to be postmultiplied

[ Open switch lJ

Close switch 3
initialize to
replace Al by

Py 8nd Ay By @y

*
Poq X —3A2

P X A
Open Switch 2
Oper Swlilch 3

Yes

Compute and
Print K

1
Q22 -V
Close Switch 1

lLoopqée*P(t)+A2 _;ui:

Print

No

Yes

Close Switch 2
Print
yxy-l

(@,B(t)+4)) 7oy

Yes

No
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CHAPTER VIII

THE SAMPIED-DATA RICCATI PROGRAM

1. Description of the Problem: For many purposes, the variational theory

presented in the preceding chapter is more conveniently applied in discrete-

time. This is the topic of the present chapter.

2. Theory: Consider the linear dynamical system

(2.1) Xpep = %% Ty
where

t = integer,

x, = (p x 1) the state vector,

o
]

% (p X p) transition matrix, a function of t,

=i
il

(p x @) dinput matrix, a function of 1,

(@ x 1) +the control vector.

<
Il

Such a system may arise in a variety of ways. ILet us assume only
that we are given a linear system, that is @t and Pt are independent
of Xy or .

The control problem we will consider may be stated as follows.

Given the desired value xd of the state vector, manipulate the

sequence of control vectors (ut} in such a way as to bring the state

vector X, rapidly as close as possible to xd, and then keep the state

d .
vector near x at all times,
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Iet Q ©be any nonnegative definite symmetric matrix, As before
IIx - xdilé will denote the quadratic form (x - xd)'Q(x - xd‘). This
pseudo-metric (metric if Q is positive definite) will be our definition
of the distance between states. (We deviate intentionally from the point
of view taken in Chapter VII in order to emphasize certain additional as-

pects of optimization. )

By static optimization we mean selecting a constant value v of

the control vector giving an equilibrium state x* of (1) lying as close

as possible to xd. Then x¥*¥ and W are characterized by the relations
(2.2) x* = Ox¥* + I
and

lx* - xdﬂg = minimum.

(We have assumed that ¢ and I’ are independent of t, Dbecause otherwise
the problem would not be well defined.)

Such a up exists, but knowing it may not provide a complete answer
to our basic problem, hecause the equilibrium state x* wmay be unstable,

Consider the scalar system

g1 = Kg T

x
Assume xd = 0, Then w° must be zero. But no initial state will go to
zero if no control is used. Even if the initial state is X, = 0, Dbecause
of the instability of the system small perturbations about zerc will even-
tually become arbitrarily large. ©So the equilibrium state x¥ =0 will
not be maintained in practice, Note also that even if x¥* 1is globally
asymptotically stable, there is no assurance that the approach to x¥* will

be in any sense "rapid",
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Hence static optimization is inadequate and we must consider

dynamic optimization. We proceed to formulate the latter problem.

A performance index for the system (2.1) may be defined as?

t +T
Y] © a2 2 .
(2.3) G . x 1= 5 Ik -x"% + 1w 51, t, t, T = integers.
Tty Tt t=t_+1 v U, t-1'Ry ©

Usually we normalize the time scale so that to = 0 (and then we suppress

t  as an argument of ;‘fjc)

We now define our control problem to mean that the control variables
u be selected in such a way as to minimize (2.3). This is what we shall

mean by dynamic optimization.

We must find a sequence of vectors {ut} t =0, oo, T-1 for which
(2.3) assumes its minimum, At first sight it would appear that to obtain

the optimal set [ut} we must optimize (2.3) with respect to all u

simultaneously, which is an elementary but very complicated Jjob, at least

for large T.

Fortunately, we can achieve a decisive simplication by making use of
the following intuitively obvious but convenient observation emphasized by

R. Bellman in the 1950's (but known at least since the 17th century).

PRINCIPLE OF OPTIMALITY. An optimal sequence {ug} of control

variables has the property that, whatever the initial tate X and the

e . 0 L
initial choice u of control vectors, the remaining terms

ui, ug, «es must constitute an optimal sequence with respect to the state

X resulting from the choice of ug.

Using the Principle of Optimality, we can obtain various expressions
for the theoretical study and practical determination of the optimal control
sequence, (Methods derived from the Principle of Optimality are known by
the generic name of dynamic brogramming. Of course, dynamic programming is
simply the discrete-time counterpart of the Hamilton-Jacobi theory discussed

in Sect, 5 of the preceding chapter.) The reasoning used here and the

- 224 -




equations obtained are for the most part but slightly different from their

continuous~time counterparts in the classical calculus of variations,.

We observe first that (2.3) can be written in the forms

4,2 2
= - -+ -+ .
T[XO] { HX_'L X “Q HuO“R T-l{xl]}
1 1
Now let ;[xo] be the value of the performance index when the

optimal sequence is used. Invoking the Principle of Optimality, we obtain

a functional equation for ;:
o . '
Tko]— min Tmo]
uo, ul, L LN )
(2.5) .
| e L ) L L
u, <1 S

This functional equation is solved by an iterative procedure.

. . . e o
The successive optimal (minimum) performance indices ¢ are comnected
by recursion relations:

O, . d,2 2

o1 = min (g - xS+ g I 3,

T-1 T -1

1 uT-l QT RT

(2.6)
k:;[xT-k-l] = min (kg - Xd”ST * ”uT-k-lni * E[XT-k]}'
Yr_k-1 -k T-k
Substituting (2,1) into (2.5) we have

(2.7) Shxp i1 = min (lfp_j%pq * Doty - xdngT + nuT_ln;T}.

Ypo1

From the theory of the pseudo-inverse, we know that the minimum of

this expression is attained when




(Tp 19y * Bp) (T Hrg 2197 (®p_1¥p_y - %))

d
+Jox,

lg‘lo
=
I

(2.8)

= - K&

where § denotes the Penrose-inverse of a matrix.

Substituting (2.8) into (2.7), we get

°lx,_,] = +

Do I - 200 uxt 4 xS 5,7
where

Py = (9p_ 3 = TpyKy) QT( Tpo1Xo) + KRiK,s
(2.9) Up == (O - Tp iK) QT(TT 1% = I) ¥ KoRpIs

b 4
—_ 3
1° (PT-lJo - 1) QT)PT-lJo -I)+ IoFrdse
Now we claim that

(o} 2
R R

We will prove the assertion by induction., The statement has been
already shown true for k = 1, We assume it is true for k - 1. Using

(2.6) we writes

K U QT+1 x ”uT—k Rk
gyl et o e YE .
TR kel n k-1
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Applying (2.1), this becomes

o . a
k[x‘l‘-k] = min {HQT-kXT-k + Tp Uy = X “QT+
uT-k 1k
2
+ || I
ek Rp+1-x
2
+ ||g |
ek T pactnok Pk 1
a
- 20y e * Ty ) Yo * I CHIRE
The minimum of this expression is attained when
° = . [ (p .+ ) I ki
Up rok Pl t Cpe1x T * Bpeiax
a
' - Pt
X 00 (B 1 * Qg )P ~ Dl (e Qpe1 )% ]

a
= - K %ok T ¥

The fact that u,; X is a linear combination of XT Xk and xd

completes the proof, and we can obtain the following recursion formulae

for Py, Uk’ and Sk:
Py = (O = TpyKy ) ( 1 * Qo Ok - a1

MR R L] )

(2.20)) - U = (0 = Tp o) (B + Qg P = Uy + Spena) ]

oo
- K 1Bx1%ka
H
= (T - 1
S = (Coed 1 - I) Qg o Cpgeiey = 1) F T 1Bpen 9k
+ 1 - 1 1 .
SRR A SIS R VRO M e U U R L T
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Considerable simplification is possible after expansion and use of

# #

the pseudo-inverse lemma, A"AA = A",

(2.11) Pe = 0 LBy + Qg ) - (Pk-l * QT+l-k)PT-k[P‘T"-k(Pk+l * Qpyy )
Ty * Brag g T By Oy )%

(2.12) U = (O - Tk ) (U + Gy )

(2.13) K = Mgeaa (B + Qp Ty g 1 * Ry PCE' 1B+ Q)0 1

(2.14) T = Dopeg (B *+ Qp Iy ) + ]#PEE' -1l + Q).

From the formulae for P, and U, we see that P, =1, = 0.

Although the preceding manipulations have been rather tortuous , wWe
now have quite explicit formulae for computing the control. We observe
the important result:

Under the specified assumptions the optimal control vector is a

linear (but time-dependent) function of the actual and desired states of

the system.

Examlnatlon of the derivation shows that the control to be used in

minimizing 'f [x ] is the sequence

o d
YW = - K].’-lxo * 4 P-1%
o} d
W == K pxy +dp X
o _ d
Upage T T KX T odeX
o _ d
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Note that the subscripts t of x and u indicate the actual time, while the

subscripts k of X, J, P, etc. are "time to go' until T.

At this point it is appropriate to discuss the very important case
where we wish to minimize the performance index over an infinite number of
steps.

From the derivation we see that Pl is computed using the transi-
tion relations and weighting coefficilents applicable to the last interval
considered in the performance index. But this has no meaning when we are
optimizing over an infinite number of intervals. Taking a practical point
of view, we choose some T which in relation to the system parameters
seems to be sufficiently large to allow the system to come to rest long
pefore t = T., If the system is periodic over the entire range of optimiza-
tion and completely controllable then we would expect that Kk would tend

to be periodic as k - T.

If the parameters of the system and performance index are constant,
we have a much simpler situation., In this case, after using the initial
control, we have exactly the sauwe minimization problem since we must still
optimize over an infinite number of steps. Thus we would expect to obtain
in the limit k — o a constant value of the feedback matrices K and J.
If the system is completely controllable and xd is a possible equilibrium
state of the system, then Pi and Ui approach limits and this expectation
is fulfilled.

Under these conditions we can generalize further. Let us assume
that xd % 0 and asymptotic approach to xd ig desired, This is impossible
unless x> is in the range of (I - 8)~T'. Even then if R # 0, x will

not approach xd, but a balance will be reached minimizing the sum

N
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Thus asymptotic approach to xd implies that we must ignore the
cost of control because as x —x, u —aPﬁ (I - o)x % 0 = const. It
seems therefore that under certain circumstances it might be desirable to

use a performance index of the form
a2 a2
e = 52 + -

where

o= P#(I - @)xd.

If we do this, we find that

us=-K + Jkd + Lud,

where K and J are defined above and

= [r*(p + Q)rl'rom

with

M=- (I -0+ K'r')‘lq>'(P + Q)rr*(p + Q)r + R]#R.

There are certain differences between the discrete and continuous
control problems to which attention should be drawn. These follow mainly
from the fact that in the discrete case R may be singular. For instance,
in order to take the state of a continuous system to the origin in finite
time the ordinary quadratic performance index method cannot be used; in-
stead the "Minimum Energy" trajectory is utilized, The difference between
the two riccati equations is solely a matter of terminal conditions, it
is true; nevertheless special treatment must be used. In the sampled case,

these problems do not arise, If s is positive definite, Q and R




zero matrices, and the system completely controllable, P will be zero
after at most n (dim x = n) steps. (See Sect, 8 of previous chapter for
notations.) This is the so-called "Dead Beat Control.

Physically the requirement that control be piecewise constant re-
stricts the system response. In the continuous problem, sufficiently
large control can make the state error arbitrarily small. This is no longer
true in the discrete system. In the continuous system sufficiently large
control can take the system to zero ("Minimum Energy Trajector") in arbitrarily
small time, In the discrete system a certain number of sampling instants

is required and no amount of extra control can reduce this number.

3.. Computation: For the moment we will consider only the computation of
Pk and Kk.

Iet us define

Pi = Pk + QT-k;

then equation (2.11) can be written

fos
= ¢! - ' + px _lo .
P o= ot (B o - B T TPl aTra Rppq ) T PEo11% ok

ﬂ 1
K = g 1 PETpx1 * Rpg) T oo Tpeie-1 PR k-1

At the risk of being pedantic, we will outline very carefully the

phasing of indices in P and X.
P, is always zeXro.

Pl is the value of the performance index obtained by using optimal

control u% over the last interval onlye.
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Pi = Pl + QT-l’ namely P. plus the weighting matrix at the

1
(7-1)*® point.

¢ d -
Up_ g = - KBXT-l + be where Kb and Jb are computed using Pﬁ,

not Iﬁ.
BX = Fp+Q,, where Q, has not been defined (see (2.3))., This is
purely a computational problem and merely requires that some mabrix QO

be provided for the brogram,

Pk = Pﬁ - QT-k’ 50 if the performance index matrix Pk is required,

QT-k must be subtracted from the program output Pﬁ.

If comparisons are made between the discrete and continuous perform-

ance indices, we must use the redefinition

] o) = = (t, -ty )l - 532+ o2 1
(3.2) T 0 ‘kfl(tk = by ) llbey - x IQk k-1'R, "

Computation of Uk

if Kk converges to K and Uk to U then from (1.9) we have

does not fall into the pattern given, However

U= (2 - TK)"(U + Q).

Since we have K available we can compute U and thus J., Notice
that although we need not have assumed xd constant our program can obtain
J only if U converges, which probably will not occur unless Xd is con-
stant,

The form of the equation used in the machine is describved in

Chapter I, page 11 and Fig. 1.

Some transformations are rcquired. In terms of Chapter I, Fig. 1,

we let
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Fonoy = B
MACH ~ ”SYSTEM

POyach = Fivsren

=Tt
Gyacr = Tsysry
R = R

vacH = RsysTeM
Yace = YsysTEM

- %1

Indexing of parameters in a nonstationary problem must be handled

by proper programming of ASP, see, for instance, Problem C in Chapter IX.

Under certain circumstances P*¥ will be independent of time. A

relevant theory is:

THEOREM: ILet R =0, T'PX' be nonsingular and rank TI''PXT = rank P,

Then Pgr(r'Pgr)'JT'Pzg P¥, implying that P¥ = Q = P¥ for all k.

Proof., Pg = Q = AA', T'A nonsingular (we make the trivial assumption
that I’ has maximal rank), then

] = H
PAD(T'PAT) T 1P
= AA'T(T'AA'T)TTUAA = AA = PX = Q.

An important special case occurs when I' is a vector and

rank QI' = rank Q.

An analogous result states:

THEOREM: If I is nonsingular, P1*§= Qe

Proof. Consider P¥ -PgI‘(T'PgT)ﬂI"Pg. Since T is nonsingular,
mltiply by I'* and I Then

1 - 1 DX # ] .
T'PAT - IPXT(T'PAT)"T'PAT;
by the first pseudo inverse lemma, this is the zero matrix,
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A1l of these results are alike in saying that if k states are
penalized and there are k independent control variables which can inde-
pendently "reach" the k weighted states, then the performance index is
zero. Clearly if R # O, this cannot be true.

PSEWO in SAMPL does not iterate, It uses Pl which is ordinarily
10-2. Therefore unless R 1is a scalar Pl should be changed by PIZER

to something like 10°C or 1077

4, Checks: Input conforms to Chapter I notation, not to the system (2.1)

described above.

- - —~ -
0 1 0 0 0
F = 0 0 Ol G'=1|2 0
0 0 2 0 1
L i L i
3 1 0 1 1
Q = 1 1 0| R= .
LO 0 1 1 2

k(0), P(1), K(1), and P(2) appear as Fig. 2, 3, 4, and 5 and are

correct to the given number of places.

5 Filtering Theory: In Sect, 2 we have set up a control problem for a dis-

crete deterministic system and derived the appropriate equations for the
optimal feedback and the minimum performance index. Through the Principle of
Duality we know that these same equations represent the solution of an

optimal filtering problem.

For pedagogical reasons, however, we prefer to derive the equations

for the optimal filter ab initio.
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Consider the system

gl T Y% T Y
ol
(5-2) Yy = Hexg + vy
where
t = integer
X, = the state vector
@t = transition matrix, a function of t
ut = an element of a vector-valued independent
gaussian random sequence
H = (a X p) output matrix, a function of t.
Ve = (g x 1) an element of a vector-valued indepen-
dent gaussian random sequence,
— — 1 _ |-
We assume that Fu, = o, Ev, = 0, Euve, = 0, Euu, = Qtatt' and
v X
Ev,v{ = R, where Q  and R_ are respectively (p x p) and (q X q)

matrix, functions of +t; we also assume that [®', H'] is completely con-
trollable, i.e. (5.1) is completely observable.

The filtering problem we will consider may be stated as follows.

Given the wvalues of the output at T times (yb, Yys eees yT}, de=-

. . . “ A 2 -
termine an estimate X4 of Xy such that EHXT+l - XT+1” is minimum,

This statement has a formal resemblance to the usual least square
fitting problem which may in turn be posed as a problem in orthogonal pro-
Jections in an inner product space (see for instance the Orthogonal Projec-
tion Iemma in Chapter]V). Iet us digress to show that this resemblance is

more than formal.

Consider the real-valued random variables Vos Y19 sees Ipe The set
of all real linear combinations of these form a vector space Yﬁ. (Remember

Vi does not denote the sample obtained at t but the random variable at ©
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that is the set of all possible samples at t with some distribution func-

tion.) Then any linear combination of the Vi is also a random variable,

Furthermore, in this vector space, an inner product may be defined
(y£, yi,) = Ey£y£,. But now that we are in an inner product space we can
apply fourier analysis to our problem. The orthogonal projection lemma
I

from Chapter]V tells us that Elixp,, - 2r+1 will be minimum if X o

is the orthogonal projection of Xy on YT, provided we restrict Xmaq
to be a linear functional on YT.
It is interesting to have the following theorem which tells us that

the orthogonal projection on Y, in the case we consider, actually gives

X 12
T+ ~ fral

THEOREM: Iet {xi}, [yi} be random sequences with zero mean. We

the minimum value of E[lx

observe ¥, ¥y, ee+s Ype Lf elither

(A) the random sequences are gaussianj or

(B) the optimal estimate is restricted to be a linear function on
I®

YT and the function to be minimized is EHXT+l - Xniq
estimate of Xy giVEN Y, esey yT is the orthogonal projection of

*pep 92 Tpe

then the optimal

In the sequel, we shall be dealing mainly with vector valued random
variables. In that case we have only to remember that YT is an m(T+1)
dimensional space and YT+1 is m(T+2) dimensional. This is actually the
only novelty to the analysis -~ at each step we increase by m the dimen-
sion of the space into which we are projecting. The notation to be used in
this case will be explained at each step. Furthermore we will minimize not
just E”XT+1 - §T+l“2 but even 2E(XT+l - §T+l)§
component of the error E|x - ¥||° separately. Iet us assume that the (¥}

that is, minimize each

have been orthonormalized to f{e,}. In R' we mean by this that

_ “th . .
(et, Et'> = 8., 1. However the component etj. of €, is a random vari
able and it is these that must be orthonormalized, i.e. Eetjet'z = 6tt'k£ =0

€., =
£ = 0

unless i = j =k = f. This is conveniently expressed by writing Ee gt

I.
m
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Purely algebraically, we know that
~ T
(5'2) XT"'l = th(XT-*-l), €t)€t.

By this formula we mean that every component of Xy is projected

into YT
A T
(5.3) (pyp) g = tgo((xm) 5 €p)ege
Since € is an m-vector, we can write (5.2) more explicitly as
- T n
(5.3") (hppp) 5 = Z kfl( (xpa)p €oa)€

which has a clearer representation as

T
(5.4) Xy = tEOE(xTﬂe%)et.

In other words, is a random variable expressed as the sum of random

2
T+1
variables € with coefficients determined by the expected values

t
1
E(XT+1€t .

Using (5.1) in (5.2) we get

|

. T
Xppy = tfo((q’TxT *up), €pleg

T T
o .LZ (xT, et)et + oz (uT, et)et).
=0 i=0

Since {ut} is uncorrelated, we have (uT, et) = (0 for

i =0, eeuy T, by (5.1). Thus

A
Xpyp = 0plfp + Gy eplegle
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Now what is eT? It is the component of Y orthogonal to YT 19

. ~ .
normalized. Let us observe that (yT - HTxT) is orthogonal to Y, We
know that

-1°

A
E(xT - XT)y% =0 t =1, «oe, T - 1.

A~
- ! - - 1 - t = = -
So E(HXT HXT)yTA 0 and E(yT HxT)yt Evpyg =0, t =1, ..., T-1.
And since (yT - HXT) lies in Y, it must be a multiple of €pe In the
usual analysis where Y is one-dimensional, we would say a scalar multiple,

but here we can say only that

where A 1is nonsingular.

~

We have, therefore, shown that x

T is generated in a system

*pey T (P;ZT *+ Kplyp - Hxp).

Now let us determine KT.

~ A

We know that XT+l = xT+l - XT+1 is orthogonal to YT. From the

discussion above we know that this means
E}’ZT'*‘ly'é = O fOI‘ t = l, csey T.

Hence
OpExpYy - Kpllpixeyy + Bupyg - Kpfvgyg = 0.

Again we have (uT, y£) =0 for t =0, se., Te By optimality of §T’

_(§E, yi) =0 for t =0, ses, T=-1l, Because vTxé =0 forall t and
= .. . .

VpVy = Rpdyqs We have Evpy! = Rpe So we finally arrive at
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OER Y = Ko (HER gy, + Rp)

i ] _ ~ t ~ ~ A N
Bxp¥p = Exgpdln + Exove + BxpXoHn.

(5.5)

~ A
We know from fourier series that (xT, xT) = 0.

iy = Expxgly + Expvy,

= > L ]
EXTVT ExTvTHT E)gI,vT

A
vl

TT

SO

But ;ZT is orthogonal to eT,

Qpr (Vg - By ) = 0
Gy (Hplag = %) + vy

_A ] 0
—XTVT—- .

Iet us denote ESE'T;{T by P,_[I and attempt to find a recursion scheme for P_,

Pryp = Oy = Ky Py(0y = Ky + (0 - K% uy
(o - KNHN);NVNKI:IRNK&
(‘DN - KNHN)PN((DN - K‘NHN) T Oyt KNRNKﬁ

i

After a similar reduction we obtain

3 3 ﬁ ]
P ooy = OylBy - PRHRIE P G+ RYIITHP 00 + Qp
4 1 ﬁ
= OP A HPVHE + Ryl

A ~
+ - .
q)oxo 5 ( Yo Hoxo )

8

o4
]
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Since (5.5) must be satisfied exactly, not in the least squares
sense, it is necessary to Jjustify the use of the pseudo-inverse in the

formula for KT. The Jjustification is that a solution always exists since
Range [HPH' + R] ) Range HP

provided P and R are nonnegative definite symmetric. This assertion is

proved in the appendix to the chapter on approximation of an impulse response,

A
These formulae require initial conditions PO and X which may be
otained for instance as follows.

By our assumption of complete observability

2 @,n-l

[H', @'H', @'°H', ..., H']

has maximal rank, Iet q be the number such that

A = [H', o'H', ..., 0'371H?]

has maximal rank,

Then

= * = +
Y Axo Q

where
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v

o
vl + Hu.o
Q= v. + Hdu + H *
2 o T AN

2
V5 - HO u + H(1>u1 + Hu2

L -

A
Our primary concern in an initial estimate X, is that it be un-

biased, i.e.

Il
o

"N
E(xo - xo)

~

E(xO - KY) = E(I - K’A)xO - EXQ
= B(I - .
(I - Kp)x,
In order to guarantee that this is zero, we must choose K = A#.
L e V) t
Tt is then possible to compute Ex x' =.AﬂEQQ'Aﬂ , and, letting
oo
N
X = QEA#Y
o]

and

P = Fatroontorc

we are ready to start our recursion schene.

This brief analysis brings out the importance of an unbiased initial
Qo since the derivation of the minimum variance estimate requires the pre-

La¥]
viovs x +to be unbiased.

‘g an example to help those who are confused by the outer products
of Eur .. ~an vectors, e.g. Exx', which appear to be inner products in the

probak . r space, let us point out the following precise analogy.
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Iet f?! = (fl, ceey fn) be a row vector of n functions which are
Iebesgue square integrable on [0, 2m]. We desire the mﬁh Fourier approxi-
mant for f. The easiest way to write the solution is by representing the

coefficients of the Fourier series as an outer products

a1 f(omy mo - 2T o cos it
=3 1) 5 fat + % [ f(cos it)at, [ f(sin it)dt-’
0 i=1 0 0 A

- sin it|!

The significant property here is that in both the example and the

problem itself there is not merely a minimization of

A ey
I - 22 or Ex - x|

but minimization is taking place component-wise! That is, we are actually

minimizing each

(?i - fi)2 and E(;; - X)? i-= l’ ee oy N,

Thus each component of x 1is projected into the probability space and at
each step more than one new dimension is being added to the space into
which we are projecting. In the Fourier approximation we are projecting

each component of f into the function space spanned by

{cos it, sin it} 1 =0, see, m

and at each step we add two to the dimension of the fitting space. (It is
not universally known, but the n'® Fourier approximant is "best" in the least

squares sense.)
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SAMPL

Select

Matrices
G,R,Q,D
PC,F, PG

Are
Matrix
Dimensions
Conformable,

A=PpPG! (GFG' + R)

Compute

@

i

= F(P - AGP)F' + Q

|

Intermediate

i+l i
=P - P
g Jd Jd
= +
ZlPl ll
Jd
J TRA
Y out
i+1l-oi 4
Pflnt K and P
Yes
No
Yes | No
No
Fig. 1
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CHAPTER IX

COMPUTATION OF TIME HISTORIES

1. Description of the Protlem: The entire manual is concerned with finite

dimensional linear dynamical systems. That is, processes determined by
linear differential or difference equations. This being the case, one of

the most important problems is to obtain the time history of the state.

As we have seen in Chapter II, this involves computation of the
transition matrix -- ordinarily a very straightforward process., In this
chapter we shall consider several numerical difficulties which can arise.
In general these belong to two categories: poor conditioning and non-

stationarity.

ASP has two formats for displaying transient behavior. We will

illustrate both of these and discuss their respective virtues.

2. Theory and References: Theoretical background for this material is

contained in Chapter IT and Acrivos, see 3.B) below. Acrivos is concerned
with discrete systems but in the digital computer we are always constrained
to discretize so that -much of this material is pertinent to both continuous

and discrete systems.

We shall now consider several distinct problems (A, B, C below)
to familiarize the reader with techniques which are repeatedly used in later

applications.

AA, The Specific Problem: We begin by computing the transition matrix of

m T -
0 - L sy I
10 CoS 75 sin lOt
(BAcl) }.{ = 'X, @(t) =
T . T
== 0 - sin = ¢ il
| 10 i 10 cos 1ot
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In the computer we have no method of functional expression, so we
must compute @ at selected points in time. For convenience we ask

for printout at fixed intervals, say, T = .5.

LA, Equations and Procedure: We will compute

o(.5) = e X

and then use the relationship

3(.5k) = 85(.5).

5A. Results: The ASP program used to compute such a transiton matrix may
be seen in Fig. 1. Results are good, as would be expected in such a
trivial problem. The errors are larger than can be legimately blamed on
the fact that wyﬁo can not be accurately entered in the machine, For
instance , the error in sine at k = 10, where the argument of trigono-
metric terms should be w/2, is .2k ° 10'6, but the errors in m/10
should be less than 1 » 10~ and the derivative of sine at this point

is nearly zero. So it appears that the errors are largely accumulated

computational errors.

The rather large sampling period makes it difficult to check phase
precisely. DNevertheless it is possible to say that these are genuine
errors in the computation of & rather than phase errors caused by incorrect
values of the argument., In the first place 0.5 enters the machine exactly.
Secondly, the errors increase 1ineafly with time and the value of the deter-
minant decreases linearly. If a phase error were contributing the cosine
term would not have errors increasing linearly with time and the determinant
would remain constant. Notice that there is an extremely small phase error

as measured by the sine terms being nonzero,
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element error

determinant error

100

200

r
.5588.10’6

~-.99999976

-

-.99999756

-.5&76-10'6

ol

-

-99999513

.1051'10"5

K99999024

.2023+1072

=3

99999976

6

.558810"

.5U7610~°

-+99999756

-.1051+1072

«99999513

-.2025-10’5-

+99999513
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One interesting aspect of the computation was that throughout this

fairly long transient the numbers which should have been equal were equal.

6A. Numerical Considerations: Observe that the previous F matrix was

in good form for computation. If we take the same problem and change only
the units in which the components of x are expressed, we could obtain

the mathematically identical system

T . .40 T 6 .. T
0 T0 10 cos T t 107 sin 10 t
¥ = y, o(t) = .
T o 140 6 . T T
- 10 10 7 O - 10 7 sin 10 t cos 10 t
b o i —
In this case .5 ||F]] > 10 so 7 will be halved until —}% IFll < 10

(see Chapter II) and the exponential squared k times. In t%is example

k was 1t and T was EET%SE ~ 5~10_5. Because of this all the signifi-
cance was contained in the sine term since the cosine to eight decimal places
was one. This seriously affected the accuracy. For one thing notice that

terms which should be equal are not precisely so.
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t o) element errors determinant errors

[ 26081077 .99770785+ 10°
5 .22:1072 107
-.99770787-10~°  .3353-1077
-.97731353 2617
50 2.2.107% b 41072
-.2647-10‘12 -.97731354
95514177 -.5332
100 b.41078 8.8:1072
.55&2-10‘12 OLl14181
. d
.91229575 -1.123
200 8.8-1072 17.6-1072
1.135-10™%2 9122957k

Not only does this cause loss of accuracy but it also wastes time in
the exponential routine. This problem is a very serious numerical one, it
is difficult to tell whether a number is small because it expresses an unim-

portant coupling or because the system is given in a poorly chosen basis.
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In this case (%O) . lO"6 is vital to the system although it is much smaller

than the other matrix elements. Usually we will try to equalize elements as
much as possible by using diagonal transformations. No more complicated

transformations are attempted as a rule.

TA. Remarks: In this simple case where we know the transition matrix, we
can consider the problem to be discrete and load &(.5) into the machine,
Clearly this is the most machine-efficient process as it avoids the exponen=-
tial computation, But it means also that the programmer must compute sine
gb' Since the last step is laborious, it is better to load F into the
machine and let it compute @(.5).

Another decision to be made when computing time histories is whether
or not to use TRNSI. TRNSI cannot be used with nonstaticnary systems,
If a complete homogeneous solution is required TRNSI should not be used;
it is inefficient. If a complete solution, including control variables is
required TRNSI should not be used if n > 7, In fact the use of TRKSI
should be confined to the case where only one or two initial vectors are to
be considered and the number of outputs is less than seven, A drawback of
TRNSI is that it has only a four-decimal-place print format; if the system
is well-conditioned this should not be a serious objection. In programmed

transients, however, we can compute in a well-conditioned basis and retrans-

form for printing with no accumulating error due to poor conditioning. Clearly

this cannot be done in TRNSI,.

To cut down on the paper volume of output, we did not use the Fig. 1
ASP Program, but instead that appearing in Fig. 2. This presents the output
in a "packed" form which uses the output routine, and hence writes a new page
less frequently. Since Fortran uses blocked output, there is no significant
saving of machine time, and it makes output somewhat more difficult to read,

but the factor of 10 decrease in pages is worth come inconvenience.
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3B, The Specific Problem: As a second example let us consider a system

given by Andreas Acrivos, "The Transient Response of Stagewise Processes”,

Jour. SIAM, 4 (March 1956):

0 k35-21  355-54 1
(3B.1) X = -.2.0892olo'2 -2.4507 0.6577 |x + | 0 |u.
-O.0586-lo"2 1.b507  -2.7634 i 0

Notice that the units (of physical quantities) have been poorly chosen.

We can easily transform to the system

-~ i o
0 L, 3521 3.5554 1
(2B.2) ¥ = |-2.0802 24507 0.6577 |y + | 0 |u.
-0.0386  1.4507 2,763k 0
- ~ .

using the transformation

r1. 0 0
(2B, 3) y=l0 100 0 Ix.
0 0 100 ]

We will run a transient response of the system to u = 10. 1in both
the transformed and untransformed system to analyze the effects of the trans-
formation. In addition we will obtain a few points of the frequency response¢

using the transformed system (3B.2).

The eigenvalues are given as

>’
1l

1= - 37778

Np,5 = = 0-T180 * 13.0179
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meking the shortest time constant about .27 and the largest about 1.k.

Iet us use & print interval then of .05 and a final time of T7.5.

4B, Equations and Procedure: To obtain the transient response, we let
¢ = 4’(-05),

0.05
r= [ ofr)ar
0

o O H
(™

and compute

x(.05(k+1)) = ox(.05k) + T'u.

To obtain a point on the frequency response, we enlarge ‘the system by

a8 harmonic oscillator feeding into xq and run the free motion. After ail

transients have decayed, the amplitude and phase may be calculated.

0 h.3521 345554 1 0
-2.08%2  =2.4507 0.6577 0 0

F = | -0.0386 1.4507 2,763k 0 0
0 0 0 0 ®
0 0 0 -0 0

L -

The program used to do this appears in Fig. L.

The transient response could also have been computed (probably a little
less efficiently) by this same method, using a fourth order system (adding an
eigenvalue = 0),
5B. Results: If we consider only the particular solution, this appears to

be an ideal situation in which to use TRMSI. We need only one vector solu-

tion of three components and the solution provided By Acrivos is accurate
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only to three significant figures. However, we wish to compare results obtained
for systems (which is (3B.1) and (3B.2), so we will use the program in Fig. 3
(which is virtually the same as that in Fig. 2) in order to obtain more signi-

ficant figures in the output.

There was very little difference in the computation using scaled and
unscaled values, both were accurate *o the number of significant figures

given by Acrivos. At t = 7.75 we had:

x transformed x untransformed
1.5908521 1.5908545
-1.5968528 ~1.5968528+10™
-(.86253438 -0.86253363-10‘2.

The correct results are (transformed)s

[ 1600 5641102
x = | -1.595 | = | 0.300 e =D TTT8%
~0.860 | 0.7
F 1.544 2.876
- 718% .
+ e -1.895 | cos 3.0179t + | 0.075 | sin 3.0179t

L—O.’-@B 0.637

The computed response of Xy is graphed in Fig. 5, where the largest
time constant (1.39) and the frequency may be checked easily.
s2 + 5.2141s + 5.81814
2 2
(s +3.7778)((s +0.718)" + (5.0179)")

The transfer function for xl is
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which aids in checking the frequency response. The initial response to an
input of sin t is graphed in Fig. 6. From the transfer function we compute
the amplitude to be .207 with a phase lead of about .40 radians. The digital
output after only one full cycle of the input indicates an amplitude of .208

and a phase lead of .40 radians.

As in the transient response, we see here the prime virtue of the com-
puber with no intellectual effort and for modest computer charges we can
obtain quite reasonably accurate quantitative information about the system
response, such as overshoot and terminal value in the transient, phase shift
and amplitude in the frequency response -- even for & much larger system than

one for which we could practically carry out the required hand computation.

It hardly seems necessary here to illustrate the use of ASP in obtain-
ing the time history of a discrete system because, as we have seen, all systems
are discretized before consideration by the computer. A system which is
initially discrete deletes the exponentiation operation but otherwise requires

the same treatment.

3Ce The Specific Problem: It is advisable however, to consider also a time-vary-

ing system. Probably the simplest and most easily checked is the ‘Jessel func-

tion Jo(t). This function is generated by the equation

0 1
X = X;
a1 -x
©
=

if xl(O) = 1, x2(0) = 0, then Xl(‘t) = Jo(t). To avoid the pole at t = 0
we will begin the trajectory at t = .1, where x, = 99750623, X, = - .0497509 3k,

We made this run for several meshes on the F matrix to show how the
accuracy improves as the mesh becomes smaller. Accuracy will be checked

against the Jahnke-Emde four decimal place tables.

- 257 -




First we set up a t mesh such that in any interval, the sample used

does not differ by more than k percent in norm from the actual F.

This is most simply done by letting ASP compute the system matrices.
Fig. 7 shows the program used to compute the F matrices and run the tran-

sient when k = 20.

The trajectory was run for k = 1, 10, and 20. The results for

3
I

10 and 20, along with Jb, are graphed in Fig. 8. The graph for
k =1 was indistinguishable from Jb.
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CHAPTER X

STABTILITY COMPUTATIONS

l. Description of the Problem: In the analysis of dynamical systems, one

of the most fundamental questions is whether or not a given system is
asymptotically stable., For a linear system in which the characteristic
polynomial is readily available, the Routh-Hurwitz criterion is quite
satisfactory for hand calculation. With the advent of Lyapunov techniques
there is a desire to obtain not only information about stability, but also
a Lyapunov function, In this chapter we will demonstrate some ASP

methods for doing this.

2. Theory and References: For Lyapunov stability theory and definitions of

stability see

[1] R. E. Kalman and J. E. Bertram", Control System Analysis

and Design via the "Second Method" of Lyapunov; Journal

of Basic Engineering, June, 1960.

[2] He 5. Wall, "Polynomials Whose Zeroes have Negative Real
Parts", American Mathematical Monthly, 52, (1945) No. 6.

[3] Anthony Ralston, " A symmetric Matrix Formulation of the

Hurwitz-routh Stability Criterion", IEEE Transactions on
Automatic Control, July 1963,

'l P. C. Parks, "Lyapunov and the Schur-Cohn Stability Criterion”,

IEE Transactions on Automatic Control, January 196k,

A different proof of the results of Ralston and Parks is given in

[5] R. E. Kalman, "On the Hermite-Fujiware Theorem in Stability
Theory", Quarterly of Applied Mathematics, 1965,
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3. The Specific Problem: Given a continuous dynamical system

(3.1) X =Fx
or a discrete dynamical system

(3.2) Xppy = Py

We wish to determine 1) whether the system is asymptotically stable; 2)
if so a Lyapunov function; 3) from this Lyapunov function we want to gain

some idea of the relative stability of different state variables.

ASP has one very simple method of determining stability. Given a dis-
crete system (3.2), perhaps obtained from a continuous system (3.1) by
T
®==¢e F, we need only raise & to very high powers, and see if its norm

is, in the limit, increasing or decreasing.

This satisfies in a direct way requirement 1), but that is all.

4, Equations and Procedure: To obtain a Lyapunov function V for a linear

stationary system (3.1) we must find a symmetric matrix P and a positive

definite matrix Q such that
(h.l) PF + F'P = - Q
or for the system (3.2) such that

(4.2) ®'PO - P = - Q.

The usual procedure is to select a positive definite matrix Q and
find the corresponding P. Unless F has an eigenvalue with zero real
part or, correspondingiy, ® has an eigenvalue of unit magnitude; there
exists a unique solution to these problems for all Q. Then the system is

stable if P is positive definite.

There exists a straightforward matrix inversion method of solving
these equations (Bellman, INTRODUCTION TO MATRIX ANALYSIS, p. 231) but set-
ting up the required matrix by means of ASP would be extremely tedious and
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2
2 ;—E) where F 1is of order

ne If n is 8, this would require the inversion of a rather well-

Moreover, the matrix would be of order (

populated matrix of order 36; a task which, besides being beyond the formal

limits of ASP is likely to involve considerable numerical difficulties.

The method which we will use to obtain P relies upon the riceati

and sampled riccati equations to find the equilibrium points of the equa-

tions

(L. 3) P=F'P+PF +q
and

(4.3pb) P, = O®'BO+Q.

If the equilibrium points are reached, they represent the required solutions
of the aigebraic equations, The principél drawback of this scheme is that
an equilibrium point will ﬁe reached only if the system is asymptotically
stable, This. pr;ecludes determining the number of unstable roots of ¥

by determining the number of negative roots of P. However, it provides

a very quick test to see if the system is unstable, for in such a case,

the riccati equation does not converge, This will be illustrated in what

follows,.

We will apply our procedures to a continuous system with eigenvalues
(-1, 2, =3 +2i, =3+ bi, -k, -5), The system will appear in four forms:
1) continuous, with F in companion form; 2) discrete, with ® in com-
panion form; 3) continuous, with F in "scrambled" form obtained by a
similarity transformation; 4) discrete, with ¢ +the exponential of F in
the 3) form.

For 1)and 2) we shall obtain Lyapunov functions by the methods des-
cribed in [3] and [4]. This will provide some check on the accuracy of the
method. For 3) and 4) we shall use the identity matrix for Q and obtain
a matrix P. This will enable us to give some statements about relative

stability of the various components, as follows.

- 270 -




when obtaining P according to (4.1), we have that
(1) K (O)Bs(0) = | x'(B)ax(as
and using (4.2)
(4.5) x!Px = _E x'Qx, .

Therefore the diagonal terms of P will tell us the value of the integral
and sum (4.3) and (4.4) when x, is in turn each vector of the usual ortho-
normal basis. If Q = I, then larger terms correspond. to components with

larger time constants.

5. Results: This material will provide one of the very best illustrations
of the fact that diagonal and scalar transformations, easily derived and
applied, are essential to the successful use of ASP (see section 6 of this
chapter).

The characteristic polynomial for the eigenvalues we have chosen is

68 + 2367 + 2678° + 178257 + 76635 + 2132487 + 3666957
(5.1)
+ 34470s + 13000.

The matrix Q corresponding to this polynomial for the special Lyapunov

function given by Parks is twice the outer product of the wvector

a' = (0, 34470, 0, 21324, 0, 1782, 0, 24)

with itself, That is, Q = 2aa'. Note that a' consists of every second
coefficient in (5.1). The corresponding P appears in Fig. 1.

The entire system was transformed by T, F* = TFT-l, where
T = diag (105, 103, 105, 103, 105, 102, 10, 1) and the resulting F and

Q wused in the program appearing in Fig. 2. This gave the very reasonably
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accurate P appearing in Fig. 3, with a maximum error of about 3 in the
sixth significant figure. This matrix had rank eight with a very high
confidence level. That is (see Chapter V) with P, =1, we had the
following table of p and rank

rank | p
6 .29.10'2
7 | .85.1072
8 | .11.107

One aspect of this computation is that the zeroes appearing in P do not

have identically zero derivatives, hence they must decay to zero and their
accuracy can never be better than that of the larger terms. This of course
is not peculiar to this method of computation. The same inaccuracies would

occur in the inversion technique.

To obtain ¢ in companion form we need to select some time interval
T over which to compute eTF. Having arbitrarily selected T = .25 we
have the problem of computing the characteristic polynomial, It would
not have been unreasonable to compute it by hand, but after all we should
use ASP, so we decided to compute the characteristic coefficients as the
components of the solution of

r, ar, <1>2r, cee, ¢rIx = @81"

where T' is some vector such that [&, I'] is completely controllable.,
Even then we had the choice of what formm to use for F. Feeling that com-
puting ¢ from F in companion form would perhaps provide the mare
difficult problem, we decided to do that; so we let I'* = (0,0,0,0,0,0,0,1)
and @ = &> ¥. Iote that (0,I") is completely controllable because (F,T")

iSe

*
This method of computing the coefficients of the characteristic equation of

a matrix goes back to the Gelebrated Russian applied mathematician

(Krylov).
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The only check which we performed on these calculations was to
compare the first and last coefficients obtained in this way with the
determinant of @ as computed analytically (e_6' = ,0024787524) and
with the trace of & as computed by the machine (3.37923825).

The characteristic polynomial as computed was

8 + 3.379037457 + 5.0860058s°

N

+ 4515714857 + 2.6004069s " + 1.0075931s”

+ .25321779s2 + 0.37539943s + .0024787312,

which agrees very well in the two given coefficients. Assuming that we
were working with the true coefficients we computed @ for the Lyapunov-
Parks (Schur-Cohn) method and used SAMPL in the program shown in Fig. 4

to compute P for Q = aa', where

a' = (.99999386, - 3.379146, 5.085585k,
- 4.5132249, 2.6029441, -.99640206
.24061150, -.029163730).

This is also the first row of P and may be compared with the results
printed in Fig. 5. This matrix has a rank of only six,

rank | p

L .3810™

5 .”(r.:Lo‘LL
6 .54.10‘”
T 23,107
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which is disappointing, since six-decimal accuracy was achieved in the
first row of P,  This is not, however, as important as it appears.
We shall illustrate our reasening in Section 7 of this chapter. When

using the differential equation (L4.3a) to obtain the P matrix as an
equilibrium point, the question is not so much whether the equilibrium is

indefinite but whether it exists. There exist unique solutions to (4.1)
and (4.2) but they are (for positive definite Q) positive definite only
if F and ¢ are asymptotically stable., On the other hand the solutions
to our differential equations are always nonnegative definite and if

(F, Q) (or (¢, Q)) is campletely controllable they are positive definite
(not necessarily computationally). This allows us to use the nonnegative
definite option in PSEW to compute rank, but it prevents us from ever

reaching an equilibrium if the system is not asymptotically stable.

To illustrate the general use of ASP in creating Lyapunov functions,
we take F in a "scrambled" form (Fig. 6) obtained by a similarity trans-
formation and using Q = I run the program shown in Fig. 7. This even-
tually converged, to the P in Fig. 8, indicating stability, but had a
rank of T

rank P
5 | .20.1070
6 .90.10‘1L
7 .80.10’LL
8 .10.107

Again using a sampling interval of .25, we obtained @& for the
scrambled system and obtained the sampled Lyapunov function generated by
(4.3). Instead of using Q =1, we used Q = .25+I, since this should
be approximately the same as Fig. 8. The resulting P appears in Fir, &,
notice that it is very similar to Fig. 8, the differences being int..d
by sampling.
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Now looking at the matrix P in Fig. 8 we can say that transients
following initial conditions in xq will involve much smaller excursions

than those in (for instance) Xze

The following table of [[x|| following initial conditions in x, and

X, 1illustrates this very well.

3
t xl x5
0 1.0 1.0
.25 2.1 21.0
.5 1.9 20.0
.75 1.3 15.0
1.0 .66 7.8
1.25 .25 | 2.7
1.5 05 | 1.9

6. Numerical Considerations: The system provides an excellent illustra-

tion of how important diagonal and scalar transformations are in ASP.
Despite the faet that the eigenvalues of F are close together, operating
in a companion basis gives very large ratios of numbers in the F matrix.
As we see in (5.1) the largest element in F is 36669. and the smallest
is 1. However the 1 is not ignorable since it provides a vital link

in the topology of the system. Adding to the numerical problem is the fact
that the P and Q matrices produced by the Lyapunov-Parks méthod have

extremely large elements and are very poorly conditioned.

For these reasons we find certain very simple transformations necessary.
Looking at the input in Fig. 2 we see that the system has been transformed
so that the largest element/émallest element ratio is now 36.669 instead of
1188180900
366669., and the same ratio in Q 1s instead of /.
> ' 8 57 In
addition to this transformation we equallze Q] and ||F|| bvefore computing

the solution to the riccati equation.
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To illustrate the effect of the two operations, we made three runs

over 1000 computing intervals.

1) With no transformation, no equalization.
2) With equalization, no transformation.

3) With transformation, no equalization.

In 1) the most significant fact is that the size of ||| makes the
computing interval so small that convergence is not approached. This
gives a double sargument for these operations -- they improve accuracy and

save machine time.

In 2), slightly better results were obtained, the diagonal elements

(compare with Fig. 1) are

6 6

(9-2:10°, 5:4+107, 6+7-107, 2.0-107, 2.4.10°, 1.3.107,

1.9.10°, 2+0-10).

In 3) results were even better

8 8 8

(1.3.10°, 5.1.10%, 3.1.1°, 6.8.107, 6.5.10°

, 2.5.10°,

4.1.10°, 2.3.10).

Notice that better is a relative term here, since none of these answers

is acceptable,

It is not impossible that 3) could ultimately have converged to the
correct answer, but we have illustrated our main point, that on any basis
of accuracy or cost, simple transformations are essential.

That they are not always vital is illustrated by our experience in
computing the characteristic equation of e'25F. It is quite evident here

that a better job of inversion could be done if the columns of
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r, o, ..., o]

are normalized.

However in the present case no benefit was gained by so doing. Apparently
the spread of eigenvalues (e-'g5 to e-l'25) was not large enough to

demand such sophistication.

Another artifice which can be used to save time and improve accuracy
is the use of a changing time interval. In these runs we have used the
largest computing interval possible, as indicated by the coding
in Fig. 2 and Fig. 7. We then tried taking the output of this program
and using it as input to another in which the computing interval had been
decreased by a factor of ten. Unfortunately for illustrative purposes,

this gave no improvement in accuracy.

Another observation about the mode of convergence . Using the maxi-
mum computing interval, we got better accuracy with an error criterion
of 10°° +than with 107 . This was because the error never went under
10-8, hence we were given the lOOOth iterant. By this time the error
was no longer decreasing, it was just randomly distributed in the lO"5 - 10_7
range. An error criterion of 10-6 therefore selected a slightly better

iterant.

One option in RICAT which has helped to improve accuracy is to
use the transpose instead of the inverse when the riccati equation is
linear (see Chapter IV). This saves time, and according to past experience,
it improves accuracy. Here it did not. The matrices quoted above were all computed
using the transpose, in Fig. 10 the inverse was used (compare with Fig. 1

and Fig. 3) and the accuracy was only slightly improved.

7. Remarks: To illustrate how convergence implies stability, rega: "less

of the rank of P, we took

F = diag (10'2, -2, -3 +2i, -3+ bi, -4, -5),
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used the same "scrambling" trans.ormation to produce the F* in Fig. 8,

and tried to obtain a Lyapunov function.

The diagonal terms of the matrix obtained after 1000 iterations
are all larger than those obtained previously. All but the third and
fifth are quite close to the previous ones. Furthermore the percentage
difference of successive iterants is decreasing. The following table shows,
however, that the matrix is in no sense converging and displays an un-

bounded growth indicating instability.

a53(k) 325(1!) k p(k)

1.2.10° .26.10° | 100 | .2.1072
1.5.10° .39.10° | 200 | .1.107°
1.8.10° .52.10° | 300 | .1.107°
2.1.10° .66.10° 400 .1.1072
2.5.10° .80 500 | .1.107°
2.8.10° .95.10° | 600 | .1.107
3.1.10° | 1.1.10° 700 | .9.107
3.5.10° | 1.2.10° 8o | .9.107
3.8.10° | 1.k.10° 900 | .8.107°
%.2.10° | 1.6.10° | 1000 | .8.107

We append a few Parks-Lyapunov and Schur-Cohn functions. We will
give F, P, and Q where V = x'(t)Px(t) 1is a possible Lyapunov func-
tion for the system X = Fx(x = ka) and PF+F'P+Q=0 (P=F'PF + Q).

That is, if F dis stable,

k+1

x*(0)px(0) = fm)x'(t)Qx(t)dt
0
(X(;PXO = iilx:{Q,xi) .
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F = [-al]
0 1
e, 8
1 0
0 1
0 6]
-a,5 -8,
0 0
2
0
3
0 0
a.la.5 ‘O.

Parks - Lyapunov

2
P= [al] Q = 2a;
l—ala.e 18]
P = Q = 2
0 a.l
0 aBa.h
0 P = 0 13.223.3
1 a.la.b’
-al 0 a
0 |
za.lzan.5
0
a2
1
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S - %ty

S - Mol

$e%p 4 fely - G
0
Ly,
Iply - mdm.m
0
m.m.n.m - Pmmd

N.d - ply +

dN.w - +~.U -]

9,5,

BB 4+
L.z 8.1

8B = "BE
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Schur-Cohn

F = [—a,l] P = (l - 8.12) Q = (l - a‘le)
0 1 1-8a2 a.(1 -a,)
2 1 2
P =
2
-8, -8, al(l - a2) 1-a,
- (-ad0-a)
- a, a,(1 - a, - a,
Q =
al(l - 322)(1 - a2) a12(l - 32)2
0 1 0
0 0 1
-as -2, -a,
:
2,2 2 .
r(l ~ &g ) (1 - 352)(al - a2a5) (1 - 8 )(a2 - alaa)
2
(al - a2a5) (al - a2a3)(a2 - ala5)
. 2
symmetric (a2 - la5)
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|
1

Q = aa’

)
1

23 2 173
+ - - -
1 al a a3 al a2a5
. 2
symmetric 1l - a3

companion (a8, 815 8¢y 8oy By 85 By al)

[ - ag)) (al - a7a8): (32 - 3638): (35 - a538)) (au - aha8)’

Some sidelights were discovered during the development of this chapter

Despite the fact that they are not new and not difficult to prove, they

seem to be sufficiently interesting in themselves to warrant inclusion.

let F be a matrix in companion form, and A an eigenvalue of F.

Then (1, Ay oeo, Xn-l) is an. associated eigenvector.

Iet A= diag (3,) xi;éxj if 1 # j. Then

1 1 - 1 T
Xl X2 - - - xn

n-1 n-1 n-1
xl XE - - xn
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is nonsingular and

where C 1is in companion form.

Proof: It is well known that the Vandermonde determinant of distinct numbers
is nonzero, hence V-l exists. The first n-1 rows of VA are the same

as the last n-l rows of V. Hence the first n-l rows of VAV"l are in

companion form. But A is similar to vt so vavt = C, the compan-

ion form of A.

Alternately from 1. above, V is the matrix of eigenvectors, so

if C is the companion form of A, V-lCV = A.

I I_f__ V is an invertible matrix such that the first n~l rows of VF

are the last n-l rows of V, then VFV-l is the companion form of F,

L, The minimal polynomial of & companion matrix F is its characteristic

polynomial.

Proof: Case 1. The last row of F is zero. Then F is a maximal Jordan

block and its minimal polynomial is S° = O.

Case 2. If some coefficient of the characteristic polynomial is
nonzero, so is some coefficient bp of the minimal polynomial
m
£ ¥
£=0
Consider the terms in a

= [aij]‘ Because F satisfies the minimal polynomial, a 0.

1,pt+l =
1p+1s THEY consist of bp # 0 occurring in
)

prP, and no other term unless m = n.

5. let J be a single Jordan block with eigenvalue A. Then
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B 1 1 - 1]
) »+1 r+ 1 - A+l
xe xg + 2\ (v + :L)2 - (» + 1)2
= |2 A2+ 3nE A+ RS+ - o+’
At N A+ 2+ 6° - v+t
xn-l kn-l+(n_l)xn-2 Xn—L+(n_l)Xn—2+ n-1 2n-2 kn-§ _ O + l)n

is nonsingular and Vvl is the companion form for J.

Proof: Subtract the jth column of V from the (j+l)5t, j = n-1,

n-2, ..., 1. This leaves V in lower triangular form with 1 on the dia-

gonal, hence V-'l exists.

The first n-l1 rows of VJ are the last n-1 rows of V, the con-

clusion follows from 3.

6. Iet J be an n X n matrix in Jordan form. It follows from 4. and

the fact that the minimal polynomial is an invariant, that J has a compan-

ijon form only if distinct Jordan blocks have distinct eigenvalues. We show

now that J has a companion form if distinct Jordan blocks have distinct

eigenvalues.

Proof: We will define a transforming matrix T satisfying 3.

Consider a k X k Jordan block M in J. From 5 we have a V which
would put this block in companion form. Extend V to an n X k matrix
in the obvious way; alternatively, take the first k columns of the V

which puts a single n X n Jordan block in companion form.

Iet these k columns be the k columns of T which are multiplied
with M.
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Do this for all Jordan blocks. This completely defines T. Now
if T is nonsingular it satisfies 3. and we are through.

By the method used in 5. we can reduce this question to that of
the singularity of column juxtaposes of matrices

r 1 0 0 0 - )
A 1 0 0 -
Xg 2\ 1 0 -
2 n° 2y 1 -

i AR (n-l)xn'l (S)Xn_e (g)xn—B - ]

with distinct eigenvalues .

Now prove the assertion by induction.

In 5. we showed it true for one eigenvalue.

If one of the eigenvalues is zero it is easy to reduce T to a

form which is singular only if the induction hypothesis is violated.

If none of the A's are zero: Iet A\ be the eigenvalue with the
largest Jordan block and yu some other eigenvalue, Then dividing the
A columns by u and subtracting from the i columns we can obtain an

equivalent problem with a zero eigenvalue.
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BEGIN

LOAD Fe QeZReLTe Co DesPCoe2e+POy
MULT 29 Qo P .

NORM Fa NF «

NORM P NP

PSEUO NP, NP +RK o

MULT NF+NP» LM,

MULT LMs P Qs

SUBT ZRs Fo MF o

TRANP F FTe

JUXTC MF4ZRo TP

JUXTC  QsFTa BT
JUXTR TP+BT. TH,
NORM  THs NT
PSEUO NT» NT sRK o
MULT  LTeNTs Te
ETPHI THe TePHo PRINT
MULT . LMsPOo. ZR
PSEUO LM, LMsRK,
RICAT ZRe«PHs Co D4PC, Ps KeAlL
MULT tMe Py Ry
RINT Re Po
PSEUD Rs+ 1PI+RK+PRINT
PUNCH R+ Q
END
8 8
0 1e 0 0 o
0 0 o] ] 0
1e 0 [6) 0 0
o} o 0 o) 1e
0 0 0 o) o)
0 0 o . le o]
0 0 [§) 0 0
o} o} 10 -0 0
0 0 0 0 o)
0 10. 0 o] 0
0 5) 0 0 0
10, -13. -34¢47 -360669 -214324
~7.663 ~17482 —-2647 244
8 8
0 0 0 o) o)
o} o} 0 0 118841809
0 735.03828 5 61442554 o
827.28 o} o} o] 0
0 ~ 0 0 0 o)
735.03828 o} 454471296 o] 379499368 .
0 511776 [5) 0 o)
0 . . o] [o] 0 0
0 614.2554 0 379.99368 9]
317.5524 0 427468 o] 0
ﬁ 0 0 0 0 0
! 0 o 827.28 0 5116776
i 0 42768 0 576
‘Fig. 2
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BEGIN

- 291 -

LLOAD Fe Qs Gs Re DsPCy
TRANP Fo FToe
SAMPL FTe Qs Ge Rs Qo DePCo Pe KasALo
RINT Ps P
PSEUO P+ 1P1+RKIPRINT
END
8 8
0] Te o) 0 [5)
o] 0 0 o] o]
Te [¢] 0 0 0
0. 0 0 o} 1e
) 0 0 0 [5)
o] 0 0 1. [o]
0 0 0 0 o)
o] o} 1. 0 0
o) 0 0 0 0
(0] le (o] o] o]
0 0 0 [5) o
le ~-.002478734 «037539967 —-e2532183768 14007595337
~—2.6094121455 4.515722478 —5408601306 3.37924
8 8
+999987712 -3.379126186 «08535415 ~4.513197187 2.6029281135
- e99639594 «2406100256 =.029163549818 =-3,379126186 1164186341
-17.1842646 1542508502 —B+79573063 34366988986 ~48130616294
209854852922 5,08535415 ~1701842646 2586114466 ~2249514881
13423697395 =5.067088497 14223602229 =e1483088067 ~44513197187
15.2508502 —22.9514881 20436919915 -11e74767219 44496986614
—1.085933835 T 1316224759 2.6029281135 <8.79573063 13.23697395
~11474767219 6775318018 =2.593578874 06262982962 —e07591155911
— 09639554 B+366988G86 ~5.067088497 44496986614 ~2e¢593578874
«9928170691 =.2397457987 02905880071 « 2406100256 «8130616294
T 16223602229 —1.0B859338B35  «626298296 @ -—,2397457987 e 0578938958
~e007017128937 =+029163549818 09854852922 =+1483088067 1316224729
=2 07551155911 02905880071 =.00701 7128337 0008505231475
1 8
0 0 0 0 0
o} o} 0
1 1
o]
- 1 2
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1 4
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BEGTIN

LOAD Feo QiZResLTs Cy DsPCes2e4PO
MULT 2¢s Qo Py
NORM Foe NF o
NORM P NP o
PSEUO NP NP +RK o
MULT NFsNP LM,
MULT LMese P Qs
SUBT 2ZRe Fo MF o
TRANP F, FToe
JUXTC MFeZR s TPy
JUXTC QeFTs BT
JUXTR TP+BT THy
NORM  TH. NT s
PSEUO NT NT+RK s
MULT LTeNTy T
ETPHI THs TsPHe PRINT
MULT LMePOs ZR
PSEUO LM, LMsRK s
RICAT ZResPHs Cs D4PC, Pe KeAL
MULT [LMs P Ry
RINT Rs P
PUNCH R+ Qs
PSEUO Rs+ 1PI+RK4PRINT
END
8
-7 2e -21e
G 2e Se
-54.4 44 6 24 o
-12. 8. ~16.
30, o] o]
~16e¢ 48 -4 2
=484 8e =63,
24 -46. --24 4
] 244 0
61 T2 0
S4.e =20, 1e
20 o] ~101.
0 -S54
8 8
le o] o] 0 o]
0 o] [o] o] le
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0 o] 0 le o]
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CHAPTER XI

ASYMPTOTIC BEHAVIOR OF ROOTS OF THE CLOSED-LOOP SYSTEM

1. Description of the Problem. We shall examine the behavior of the closed

loop poles of optimal systems as the weighting factor for the control energy

tends to zero.

m m-1
bs +b s + eee + b.s + D
Yi(s m mel 1 o)
(1.1) = s
U(s n n-l
s + a s + c0e T a,8 +a
Nel 1 (o}

with an associated system in control canonical form,

X =Fx +Gu
(1.2) -
0 1
wiere F = . .
- a-o o o - an_l
G'' = (0, 0y +usy 1)
H = (bo, bl, 00y bm, O, O, [ ERDS) O).
We wish to optimize the functional
® o 2
(1.3) I Uyll® + zllul®)at (x = scalar),
0

and then examine the eigenvalues of the optimal system matrix F - GK as

tends to O.
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2. Theory and References: For the procedures involved in optimization see
Chapter VII.

The asymptotic behavior of the closed loop poles is described in

(1] R. E. Kalman, "When is a Linear Control System Optimal?", Journal

of Basic Engineering, March, 196.L,

The relevant result is this: as r -0 in (1.3) m of the closed
loop poles will go to the m zeroes of (1) in the left-half plane (or their
reflections about the imaginary axis, if some of the zeros are in the right-
half plane) and the other n-m poles will converge to a butterworth pattern
with radius N

aib[i b2 m

+ 0
I

b2
o}

The following proposition supplements the results of the reference 5
providing a simpler derivation of the product of the roots ; though not speci-

fying where the individual roots are located.

PROPOSITION. Given the transfer function

m m=-1
+ + hee + +
¥(s ) bms bm-ls bls bo

U(s n n-1
+ + s T a.s + a
X an+lS .o 1 o

If we optimize

o)

[ (y'y + rut)dt
0

the product of the roots of the optimal closed loop system matrix will be

> v
(2.1) a% + e,
[e] r

Proof: The product of the closed-loop poles is invariant under a
change of basis. Therefore we may choose the control-canonical representa-

tion with F in companion form,
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G' = [0, 0, ees, O, 1]

i

and

e
l

= [bo, bl, e bmo, O’ ey O]-

1

Then the closed. loop matrix P - r GG'P is also in companion form

and the product (-1)"7 A, of its roots is (ao + rpln), where P satis-

fies the relation *

. |
P=PF+F'P+HH-1r FGG'P = 0.

To determine Py W note that

. 2 2
Pin 0=- 2plna‘o + bo - lpln’

so that

r[-a + a2+r-l'b2]
o - o o

Pin

and (-1)"m; = ,’ai + r-lbi. Since we know that the constant term of the

characteriStic polynomial of r-lGG'P must be positive, it follows that

P = r[-a + [a.g + I'_LDE].
In e} ’\Jo o)

and (2.1) is proved.

If m=0, thenas r -0 the closed-loop poles approach a butter-

worth pattern with radius
1

2n
a2 + p it .
o 0
If the open-loop transfer function has m zeroes, then the other n-m

poles will approach a butterworth pattern with radius

1
2o 2\ 2(nm)
ab b

gm_'_m .
b r

(o]




3. The 8pscific Problem:

We

took the following four transfer functions

s® + 67 + .05t - .50 4 1,382 - 5.8 - 2.5
>
- S
- S + .552
+ s + .552
1/2 + i, and zerces at (B) + 1, (C)

with poles at + 1, -1 + i,
1+4i, and (D) -1 + i.

We selected control-canonical coordinates with

0 1 0
0 0 1
F= 0 0 0
0 0 0

and

A
Hy = (1 0 -1
Hy = 1 -1 .5
Hy = [1 1 .5

Then systems (B) and (D) are not completely observable, because of

0

0 0
1 0
5 1
0]
0]
0]
ol.

(4)
(B)
(c)
(D)

cancellation of a factor between the numerator and denominator of the transfer

functions.

L, Results: Using the program appearing in Fig. 1, we obtained the closed

p———————

loop system matrices F - GK which minimize the performance index
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h.1) [ () + nllat
0

1= .1, 1., 10, 30, 100, 300, 1000, 3000.
Using a separate (non-ASP) program we then obtained the eigenvalues
yf these matrices. The results are graphed in Fig. 2, 3 L and may be

summarized as follows:

1) As MR 0, the closed loop eigenvalues are "the same" as the
spen loop eigenvalues with negative real parts. In this case they are
1, -1, -1 +i, -1/2 + i,

2) The eigenvalues of (C) and (D) were the same, as the lemma in
jection 6 of this chapter assures us. The performance indices were differ-

ant of course.

3) Observability does not seem to affect the conclusions, in both (B)

and (D) the expected behavior occurred.

In the graphs, the straight lines are the asymptotes of the roots.

The circles have radius
1
- e \ B
b | =2 +r_l\ "
m'\ o /

5. Numerical Problems: There were no numerical problems in ASP, however

there are some points of interest. In Fig. 1 the code from

NORM Q, ),

to MULT 8J, C, C,

is an equalization of ||H'H| and normHGr-lG‘H to cut down on computer time
and help accuracy. This will be done routinely in all such optimization

problems.

Fig. 5 is a table for system (A) showing the max value of the perform-
ance index and the times required for convergence using different values of
r"l. T 1is the time step used in the riccati equation, N the number of

steps required for convergence, T the total time required for convergence.
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piimax is the largest diagonal element of the performance index matrix

in the computer weighting, b, jmax normalized returns it to the weighting

(4.1),

Roughly we may say that if the eqQualization had not been done then
for r'l = 3000 we would have had T = 366%-:f8»x .003 instead of

T —2 «15. Disregarding the accuracy problem, this would have

N3000 + 6

caused N to be over 3000.

The other coding aspect is the method of introducing a sequence of

r-l, s. This is done very nicely by using a IOAD in the loop. However
it is most convenient not to have to use a counter in the loop. This may
done merely by terminating with an error return. Following the last RI,
FORTRAN finds an input error and ejects, which is satisfactory if this is
in the last ASP program. A less time consuming method (and the only method
Dpossible if another ASP program follows) is to follow the last RI with a
dummy RI having the wrong dimension. This causes an ASP (not FORTRAN)

error which goes on to the next BEGIN card.

6. Appendix: We shall give here a necessary and sufficient condition for

the irrelevance of off diagonal terms in the error weighting of a cost functio

Let us consider a single input, stationary, real linear system

X =Fx + gu
with performance index
o
2 2
(6.1) I il + ®lat.
0

We know [1] that the optimal feedback gain k which specifies the
control law: u = -k'x) will be the same for the different performance in-

dices (1) implied by the error weighting matrices Ql and Q2 if
2 o X .
(6.2) ”Q(S)g“Q = HQ(S)gHQ for all pure imaginary s,
1 2
-1
where 0(s) = sI - F)™,
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T;(s)

Let Yi(s): ( (S)g)i and r, (s) —m where rij(s) is a

rational function of s. We will show that qk g = q has no effect upon

(2) if and only if r (im) is pure imaginary, or, more simply, if and only
if T (s) is an odd functlon of the real variable s.

What is needed is a necessary and sufficient condition for the coeffi-
cient of qkl in (2) to be zero. But this coefficient is

[r, (1o)r (1) + T, (o)1 (10)] = 2 Re ¥, (1o)r (1)

The necessary and sufficient condition that the real part of the
product Wz Dbe zero is that w = icz, where c is a real constant. A
necessary and gufficient condition that Re ;k(im)‘r t(im) = 0 then is that
‘rk(im) = ii‘(a))‘rt(im) where f(w) 1s real. But this says precisely that
:k!(:lm) is imaginary. But if 1 (:I.LD) is imaginary, then

(:Lu)) + W = (ia)) +r ( iw) = O. But this says that r (s) is
an odd function.

Clearly this condition cannot be determined Prom the open loop alone,
but if :'ck = cx, then srk(s) = cr, (s) and the condition is satisfied.
On the other hand if Ak = ex, + u, then the condition is satisfied if and

only if gi( s) 1s an even function of the real variable s.

As an example, consider a system in characteristic form

r -
0 1 0 0] fo
0 0 1 0 0
F = . . . G‘ = "
0 0 0 1 0
-8, -a -a -a 1

| © - n-1} .
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then Yi(s) =g~ and if Q is replaced by

- -
qll 0 qu cee
. 0 op 0 %o
Q =
qu O q33 LN )
. oy .
e J

i.e., 4., 1is set equal to O when i + j = 0dd, the control law remains
1J

the same.

This observation saves a little computing time and explains a

phenomenon which might appear odd if encountered for the first time.

The situation will occur in Chapter XVII and appears to be true

also after the introduction of sampling.
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BEGIN

LOAD TT D DlePC F G Q RI ZR XX
TRANP F FTe
TRANP G GTo
SUBT ZRs Fo 1l
HEAD 1MULT RIWGTo Co
MULT Gs Co» S
NORM Qs NG
NORM ) NS
PSEUO NQ« PQ+RK
MULT PQWNS M1
DECOM M1, S+SJIWERWPEs EsRKa
MULT Ss Qs 6
MULT SJs So S
MULT SJe« Co Co
JUXTC 1e S 29
JUXTC 64FTo 3
JUXTR 2+ 3» PH,
NORM  PHs NP
PSEUO NP, NP s RK o
MULT NPe«TTs Te
RINT PH+PH
ETPHI PHs TePHo
MULT TsD1s 4.
ADD 4 Do [oF-X)
RICAT QsPHs CeD2¢PCaXXe Ps KeAlL
MULT Gs Ko GCK'e
sSuUBT FeCK CF s
RINT P+PER Ko+ K CFCF
LOAD Rl
IF TTsTT«HEAD 1
END
TT 1 1
Se
D 3 1
«00001 o] 0
DT 3 1 .
0] ~-1e ~1000.
pT 4 1
100, 100. le le
F [5) [}
o le 0 0 0’
U [8] O 1le 0
6] o] o] (o] 0]
T [9] 0 [¢) o]
[¢] o] le 0 0
U 0] [0] 0 le
25 5 —1e25 5 —-e25
=Te
G 6 1
O O o] [8] [¢]
le
o [=] [+
Fig. 1
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© O
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LOCATION OF ROOTS

NUMERATOR = 1. .

7N

Fig. 2
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LOCATION OF ROOTS

NUMERATOR = 1- s2

—13i

Fig., 3
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LOCATION OF ROOTS

NUMERATOR=1-s +.5s%

Fig. U4
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r~1= 3000
2i r’'=1000

r~1=300

r-'=100
r-1= 30
r-1=10
r-1=0



Numersator = 1.

rt T N T P, jmax P,, max normalized
.1 l.kes 17 2h,2 638 2020.
1. l.286 16 20.6 213 213,
10, .98 17 16.7 96 30.4
30. .78k 23 18.0 81 1k4.8
100 <563 28 15.8 T7 T.7
300 .386 32 12,4 89 5.1
1000 .239 L6 11.0 117 2.7
3000 .148 66 9.8 151 2.8
FIG. 5
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CHAPTER XII

MATCHING DYNAMICS

1. Description of the Problem: We are interested here in the construction
of a centrol system to force the output of a given system to have specified
dynamics. Two interesting features of our specific example should be noted.
(i) The process of matching dynamics will be simplified because in our

given system

ble
[}

Fx + Gu,

(1.1)
y = Hx,

HG will be the zero matrix. (ii) Because the desired dynemics already
match certain modes of (the open-looP) F, we will find that the performance

index is not positive definite, but merely nonnegative definite.

2. Theory and References: Source material for the problem was obtained from

Dynamic Optimization of Continuous Processes, J. G. Balchen, published at
Trondheim, Norway by Institiitt for Reguleringstenchnik (1961).

The method for obtaining specified dynamics will now be derived, We

wish to change the lagrangian so as to minimize Hif - LyHS instead of
2
Il
desired system

The idea is to make the output obey approximately the dynamics of some

(2.1) ¥ = Ly.

Notice that this differs from the so-called "model-follower" problem (see
Chapter XVIIDin which we wish to minimize [y - deS, where y, is a solution
of the system (2.1).

This problem then is to minimize the integral of
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9 - g + Tl =l + e - waself + ),
We will for the moment make the simplifying assumption that HG is Zero,

as would be satisfied, for instance, by any impulse response matrix T(t, T)
such that T(t, T) is the zero matrix, or, equivalently, by any transfer-
function matrix Z(s) in which every numerator has degree at least two less
than its denominator. This gives us an equivalent system (with the usual

lagrangian) which is unchanged except that a new output has been deinfed:
(2.2) ¥y = (HF - IH)x.

Obviously the controllability has not been affected. So we need exa -

mine only the observability matrix,
(2.3) [(F'H' « H'L'), F'(F'H' - H'L'), ..., F'n‘l(F'H' - H'LY)].

To decide whether or not (2.3) is completely observable requires rather ad-
vanced algebraic analysis. In the simplest case, we have the following re-
sults

If p=1, sothat L=x (1x1 matrix), then (2.3) is completely
observable iff A % elgenvalue of F.

This follows immediately if we observe that (2.3) is (F - AI) times

the usual observability matrix

(2.4) [H', F'H', ..., P00,

Now let us consider the changes in the riccati equation which take
Place because of the new lagrangian. We will no longer assume that HZ is
zero. We will however show that the performance index is still a quadratic
form in x(to) and formally derive the differential equation which the

matrix of that form must satisfy.

- 314 -




»

+ We have the lagrangian

L 2 1 2
D=5 la(rx + cu) - 1&g + 5 fulg

and the hamiltonian

b4

min[.z+ p!'(Fx + cu)l.
u

This gives

u= - A‘l[G'p + Bx]
where
A= [N'QN + R], N =HG
and
B=DN'QM, M = (HF - IH).
The hamilton-jacobi equation is
'2%?* M=o,
where

2 07 = Ipeclls + 2p'x + flo"p + W]l .
A
Its solution can be given by assuming
o _ 1 2
v =2 I,

where P 1is synmetric. This leads to the riccatl equation
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-P=PF'"P + PP - PGA-lG’P + M'QM - M'QNA'lN'QM

- PGA'lN'QM - M'QNA’lG'P.

Collecting terms we see that this equation is identical with a

standard riccati equation if the parameters of the latter are defined as

F=F -GA™N'QM, G=C, H=M
R=A
Q =Q -QNA_]‘N'Q.

Thus the new hamiltonian function fits into the standard computational
scheme.

5+« The Specific Problem. We are given the impulse response matrix

] 1 10 1 i
(s1)(s%3)(s%2)  (s%20)(s%3)(s%5)  (s+1)(s+3)
T(S) = 2 .
-5 + L -4 L
(s49)(s#1)%(s42)  (s45)(s*1)(s42)  (s+1)(s+2)

From this we obtain the time domain representation

y " %t 4 2 -2t 180 " }jt 100 " %t 60 _-10t - %t 4

Be -2 7, + ?F —E§e - —i§e + 55?? , =2 + 2e
T(t) = L

L%_e T ge-t _ %t e-t . %e-et’ _ ety %e-zt _ _15e-5t, et ue‘2’°J

and then obtain a canonical realization by means of the system (1.1l). (See
pp. 340-356, final report NAS2-1107, July 196k4).

We can tell a priori that the dimension of any realization is at least
eight since there are seven eigenvalues one of which appears squared in T(s)

or, equivalently, multiplied by t in T(t). A little further analysis shows
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that the dimension is at least nine since the coefficient matrix associated

with the eigenvalue -2 is of rank two. (ibid.)

Furthermore we can tell that the system is not completely controllable
by any single input nor completely observable by any single output. This

follows from the fact that not all eigenvalues appear in any column or Irowv.

Using Method A, (Ibid.) , we can obtain the following canonical

realization.

-1 1
. 1 1 1
F=d1'ag(")_:;"3)'§:'2)'2:"5;"10) 0 l,-l)
B 180 60 6 ]
0] -—2—9- 1 1 0 0 55—:[ 0 ,-7- 1
H= ¢
4 2
z5 0 0 0 1 1 0 1 - z 0
] yoo2 1 B A
1 0 3 3 7 0 0 ) 3 0
et =10 1-%8— 0 l—;-% 1 -1 0 o0
0 0 -2 0 - i 0 0 4 0 2
L —1

This realization was checked by comparing the step response computed
by the ASP program appearing in Fig. 1 with that shown in Balchen p. 38 and
also by checking the terminal values of the response with those computed
directly from T(s).

We computed the controllability matrix using uy only, in the program
appearing in Fig., 2. This should give us a matrix of rank five; it is evi-
dent from the placement of zeroes in the first column of G that we will
lose - %; -5 =-10, and -1 and it is clear from elementary controllability
theory that we must lose also one of the eigenvalues -2. This demonstrates
the advantages of having the system in canonical form, for the question is

not so easily answered by numerical means.
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.

Iet us examine the situation in some detail for the insight it -
may give in the general problem of rank determination. Four rows and
columns of W will be identically zero and thereby simplify the problem.
We let p; and p, (see Chapter V) both be lO"h, thus helping to en-
sure that most of the possible ranks will be considered and their errors
printed. The times referred to are the times over which the controll-

ability matrix integral is calculated.

At .2 W was so poorly conditioned that in spite of the small

p2, the rank was given as two. The first pivotal element was l.Bh,

the third was 1 - 10_6'

At .4 the first pivotal element was 3.34, the fifth was 1 - 1070

and the sixth was negative. The errors however, after changing Py to 1,

wexre
rank 2 .6+ 107
3 1. + 1070
.6
5 5k

thus indicating that the pseudo-inversion error is not a satisfactory
test for determining rank.
At .6 the first pivotal element was 6.3, the fifth was .2 - 107

and the sixth was negative. The errors were

rank 3 .5+ 107
L 3
5 2.

At .8 the first pivotal element was 1L4.5, the fifth was .5 - 10-7,
the sixth was .14 - 10~7 both well down in the noise level of the initial
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pivot, The errors were

rank 3 .1+ 1070
4 .3+ 107%
5 .6
6 8.

This pattern then continues for as long as W was computed.

Very similar results were obtained when the controllability matrix
was computed using all three inputs except that the difficulties increased
because of the extra four dimensions and because the spread of eigenvalues
which was (- %, - 2) when w, was used, becomes (- %, - 10) when all

three are used. Since the elements of W are roughly proportional to
- ()\.i +Xj)t 4
e this increase in spread can be expected to cause difficul-

ties.

At .2 the first pivot was 10, +the tenth .2 - 10-8. The minipmum

error of 4 lO'l+ occurred at a rank of 6.

At .4 the first pivot was 149, +the tenth .2 - 10—6. The minimum

error of .6 ° 10'” occurred at a rank of 6. These minima were not very

definite

5 1 10~ 9 . 10'“
6 oo 10‘lL 3 10"lL
7 .3+ 1070 .7 107k,

This pattern continued with the smallest error slipping back to
smaller ranks until abruptly at 1.4 Py could not force the error smaller
and only two pivots were made on the - 10 and =~ 5 eigenvalues, the two
pivotal elements being 1 - 10lo and .2 ° 103. These numbers completely

obscured the contributions of smaller eigenvalues,
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., Equations and Procedure, We now wish to design an optimal control so.

that vy behaves as yl = -V and Yo behaves as yé = - 2y2.

This gives us the performance index

o]

(3 2
fo (5 + ) )

2 .
+ (¥, + 25,)g

+ u'Ruldt (1.1)
9, 22

where L can be rewritten as

2 2
L= - )2 + o)

where Q = diag(qll, q22) and L = diag (-1, =2).

This simple form for I occurs because HG = [0] We know

*
2,3 °
this 1is correct because each denominator in T(s) is of degree at least

two greater than its numerator, equivalently T(t)]| = HG = [0]2 3
t=0 ?

Because of this, we need only define ﬁ = HF - IH and then compute
the gains for the optimal regulators of the system [ﬁ, F, Gl.

However, because F and L have two common eigenvalues, the system
[ﬁ, F] has an observable space of dimension eight. We expect therefore to
obtain a performance index matrix P(0) of rank eight and to find that the

vectors

fo oo 0oxr 000 0 0]

and

[Oo o OO0 O0 OO0 O 1]

are costless (lie in the null space of P(0)). This will be true only if
the vectors lie in the null space of P(w), but we are letting

P() = [O]lO,lO'

*
(0] means m X n zero mabrix
m, n
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«This follows from the fact that these vectors will give the correct
response without control effect a fact which can be seen formally from

the two zero columns of

120 1 _ 240
0 = 5 -1 0 0 =1 0 0 0
HF - IH =
16 i
35 0 0 0 0 -3 0 1 Z 0

5. Results: Using the program appearing in Fig. 35, the performance index
and optimal gain matrices were computed (Fig. 4 and 5). Fig. 6 illustrates
yl,lO(t) which is uncontrolled, being the desiced response et anywag%
together with yl,h(t) which, uncontrolled would have the response e

also illustrated. These results were obtained using the program in Fig. 7.

- 321 -




BEGIN
LOAD Foe Go Hs TesZ1sNDos

HEAD 1EAT FeZlaPHsIN
MULT H_IN 1
MULT 1 6 SR
RINT Z1 SR STR
ADD Z1 T z1
1F ND Z1 HEAD 1
END
F 10 10
—e25 o o} o] o}
0 o] 0 o) Q
0 ~e333333333 o) o) 0
0 0 o) 0 o)
0 [o] -5 0 [¢]
0 0 0 0 o
0 5) o -2 0
0 o) 0 0 Q
O O O O "2.
0 0 o) 0 0
0 o} o) o) o)
-5, 0 0 0 0
0 0 0 0 o]
0 ~10. 0 0 o)
0 5) 0 o) o}
0 0 ~1e le 0
0 0 o) 0 o
0 0 0 -1, o]
0 0 0 0 0
0 0 0 0 -1
G 10 3
le 0 0 0 le
0 13333333 -6.3157895 ~2¢ W66666667
0 0 =-145714285 13333333 -4
0 -.33333333 o o le
0 —ed44440444 -1 4¢ —243333333
0 0 0 o 2
H 2 10
0 6.2068966 le le o}
o} « 10889292 o 85714286 le
1.0158730 0 0 0 1e
’ 1e 0 le =e42857143 o)
T 1 1
o2
Z1 1 1
0
ND 1 1
164




BEGIN
LLOAD P1+P2+4Z1+PCesD2¢D3sT1eNDeZRsWOe IsRIs Fo Go

WRITE 1 THIS PROGRAM COMPUTES THE CONTROLLABILITY MATRIX FOR THE
WRITE SYSTEM

WRITE — ——————-— XDOT = F ¥ X + G * U
PIZER P1+P2s

TRANP G GTs
MULT RI«GT» Co

MULT Gs Co Qs
NORM Fe NF «

NORM Qo NQs
PSEUO NQ» NQ s RK

MULLT NF sNQs LM
MULT LM+ Qo Qo

MULT LMsWOs wo
TRANP F FTs

SUBT ZRs Fo MF o

JUXTC FTeZRs 1,
JUXTC  QeMF 2
JUXTR 1a 2 3

RINT 3¢ 3
ETPHI 3sT1sPHITS,

MULCT  TF.D2» D4y
MULLT T1+D3y DS«
ADD D& D5 Do
PSEUO LM, LNeRK

HEAD TRTCAT WOWPHs Cs DWPCy WOy KAl
ADD Z1aT1o Z1ls

PSEUT WO+ TWT AL «PRINT

MULLT LN+sWOy W
RTNT Z1los We W
IF NDeZ1+HEAD 1
END
P1 1 1
0001 T
P2 1 1
leE=~g
Z1 1 1
[0
PC 1 4
O 0 [e) 0
D2 1 3
O 1e 0
D3 1 3
[¢) o] 1l
T1 1 1
.2
ND 1 1
3e
ZR 10 10
0] [e} 0 o] 0
(0] e} 0 o] ¢]
0 [¢] o] e} (6]
Fig., 2
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BEGTN

LOAD TTs DsD14PCy Fo4 G QiRIsZRsT1 4 XOINDIR1 1RZsXXs HeQl s

MULT Qls Hy 8

TRANP H, HT

MULT  HT &, Q

SUBT ZRs Fa 1,

TRANP — F, FT

TRANP G, GT

MULT RI«GTo Cy

MULT Ges Co Sy

NORM Qe NQ

NORM =) NS

PSEUO NQy PQ«RK

MULT PQ+NSs M1,

DECOM MT, S1SIIERWPEY EsRK,

MULT Ss Qo Qs

MULT SJs S, Sy

MULT SJe Co Cs

BLOT NQ.

JUXTC Isy S 2

JUXTC  QsFTh 3

JUXTR 242 3 P,

NORM  PH, NP o

PSEUQ NP, NP s RK

MUL T NP+ TT T

RINT PH«PH

ETPHI PH, T +PH

MULT TsD1lo 4y

ADD 4% Do Dy

RICAT QosPHs Cs DisPCoeXXs P KeAlL

RINT P+PER Ky K

IF Al.s DsZILCH

WRITE THE PRECEDING MATRICES WERE THE MATRIX P OF THE

WRITE PERFORMANCE INDEX AND THE FEEDBACK GAIN MATRIX Ke

MULT Gy Ko GK y

SUBT FaGK CF,

ETPHT CFaT1+P1,
HEAD 1MULT KeXOys KXo

JUXTR XO+RZ+» =1

JUXTR  6+KXy T

RINT R1 7s X

MULT P14XOo X0y

ADD R1+T1s R1,

IF NDsR1+HEAD 1

IF TT«TT+HEAD 2
ZILCH WRITE THE RICCATI SOLUTION HAS FAILED TO CONVERGE IN 1000 STERS
HEAD 2END
TT 1

8e
D 3
«+ 00001 [9) 0o
D1 3 .
C 1% —1000.
-1 Fig, 3
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1.0

Outputs of controlled

system

Fig. 6
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BEGIN

LOAD Foe Go He TeZl«NDe K 1
MULT Gy Ko GK
sSuBT FcGKy CcF
ETPHI CFs TePH
HEAD 1MULT He T Y
RINT Z1. Yo Y
MULT PHes T» 1
ADD Zle Ta Z1la
IF ND+Z1+HEAD 1
END
F 10 10
-e25 0 0 v} o]
] 0 0 o] o]
0 —¢333333333 0 0] o]
O 0 0 (o] 0
0 0 -5 0] 0
0] (] o] Q e}
o] 0 0 -2 o]
0 0 ) 0 0
0] o] o} 0 -2
[¢] O 0 [o e
o] 0 0 0 o]
-Se 0] o] 0 o]
0] o] 0 o] 0
0] —-10s 0 0 0
o] ] 0 0 0
0 [¢) —~1le le o]
6] [¢] o] 0 0
[s] O 0] -1 o]
6] [¢] o] 0 o]
(o] - 9] 8] —1e
G 10 3
le 0] 0 0 B le
[¢] 13333333 -6¢3157895 -2 66666667
6] 0O —=15714285 143333333 -4 o
0 —e33333333 0 o] le
0 =ed44444444 ~le 4e —Z2e3333333
0 0 o] 2
H 2 10
0 662068966 1e le 0
o] «10889292 o] e 85714286 1
10158730 [¢] 0 o] 1.
le [¢] le -e42857143 [e]
T 1 1
o2
Z1 1 1
o]
ND 1 1
164
K 3 10
«54101467 540563037 58112279 -6 79542577 «64138372E-7
—ec2 7179241 ~e 22660026 02264713 «20402217 «e10115046E-8
Fig. 7




39075574 3743898 443875866 -67588778 ¢41919892E-6

~2¢8574571 —2e348452 1¢8919291 164517066 —e 1545694 1E-9
174169672 —9.652482 —lelb4lqgll 202779363 + 1 3085039E-6
~254951548 1e9231991 FGe4811624 56473795 0 49527773E-11
110 10 10

le. 0 [¢] ] [o]

] 0 6] ] [¢]

0] le o 0] 0

o] 6] o} o] 0

o] o le ¢} ]

0 6] o} o] 0

0 [¢] 0 le 0

6] 0 e} o} 0

[¢] o] [¢] 0 1o

O o] 0 o] o]

0] 0] o] o] 0

T 6] 0 [0) ¢]

o] 0] 0] o] [0}

[¢] le ] o] 0]

e} 0] o] e} 0]

[0) [¢] 1e o] o]

0] o] (o] 0] (]

0] 0 [e] le (0]

0] o] 0 o] [0)

0] 6] o] ] le

Fig. 71
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CHAPTER XIII

AN OPTIMAL CONTINUOUS TIME FILTER

1. Description of the Problem: We shall consider a special data-smoothing

problem encountered in determining the position and velocity of a space
vehicle. This will provide a convenient illustration of the hamiltonian
technique for obtaining solutions of the variance equation. The example
shows also how to obtain the model of the random process directly from

physical considerations.

The physical picture is as follows. The position of a satellite
is measured by means of a radio signal. It is assumed that the measure-
ment contains additive noise which may be taken to be approximately gaussian
and white relative to the bandwidth of the satellite motion. A second
measurement of the satellite motion is available from an accelerometer.
This reading is also subject to noise; but here the noise is due to drift
and other very slowly varying effects, and may be considered to be a con-
stant random variable during the interval ol interest. The motion of the
satellite is linearized and assumed to be one-dimensional, and subject to

a constant, gaussian random acceleration.

The problem is to design an optimal filter which provides the best
running estimates of the position and velocity of the satellite based on

the two types of measurement noise and the variance of the acceleration.

o, Theory and References: For a derivation of the variance equation, see

Chapter V.

The problem was suggested by the follpwing paper:

[1] E. L. Peterson, "Optimization of multi-input time-varying systems

subject to multiple or redundant nonstationary inputs". Proc.
First Tnternational Congress on Automatic Control, (Moscow 1960)

Butterworths 1961. See also:
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[2] R. E. Kalman, Discussion of Peterson's paper, in the same Pro-

ceedings.

3. The Specific Problem: The assumptions are formalized by setting up a

model for the message process. Iet zl denote the radio signal and ay
the reading of the accelerometer. Both signals are supposed to be known
exactly. The equation of motion (linearized, one-dimensional, with unit

mass) is

X = a(t) = acceleration = constant = a

where a 1is a gaussian random variable with zero mean, The accelerometer
measures &a plus a constant gaussian random variable b with zero mean

(the bias error of the accelerometer):

al = a + b,

Iet Ea2 = ra and Eb2 = rb. We agssume that a and b are uncorrelsted

(hence, by gaussianness, independent) and set

We replace al, b by two new random variables u, and x. which are

1 3
orthogonal to each other (and thus, by gaussianness, independent); w is

exactly known and x is to pe estimated:

3
W = %bal’ x5 =) -,
Then the equations of motion are:
i. = X, kg =a=a - b = uy + xj.

The model is now fully described, and we have:
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(3.1) F

]
(@]
o
-

-
(o]

!

=

, and H=1[1 0 Ol

The variance equations are

do|;/d% = 20, - °§1 137

dolz/at = 0y3 + 0y, - Ullclz/rll’
(3.2) dol5/at = 0p3 - Ull“lB/rll’

do,,/dt = 20,5 - °§2/r11’

d°25/dt = 033 - 012515/r11’
do53/dt = -ciB/rll.

The Hamiltonian equations are

e . 1
Xy o 0 0 1fr;; 0 O Xy
%, -1 0 0 0 0 0 *2
% 0O -1 0 0 0 0 X3

(3.3) > | - At

b O 0 o0 O 1. © Py
b, o 0 0 O 0 1. P,
by 0 0 0 O 0 O P

— - — - - -

The Sracsition matrix corresponding to these equations is easily found.
(The = xth power of the matrix on the right-hand side of (3.3) is zero.)

The rv: . . is:
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T t/ryq 2 /2, &3 for,
£ 1 0 -t2/2rll ‘t3/6r11 -tl‘/ehrll
(3.4) ot ,0) = [F/2 & 1 /ey, ti/ekr t7/120r ;|
0O o0 o0 1 t £2 /o
0 0 0 0 1 t
| 0 0 o0 0 0 1 ]

We assume that the initial value of X{0) is: °11(°) = 022(0) = 0,
while 053(0) = p 1is the effect due-to. the bias in the reading of the
accelerometer. (Of course, all off-diagonal terms of %(0) are zero.)
Using (3.4) we find that the solution of the variance equation corresponding
to these initial conditions is:

tl‘/h t3/2 t2/2
F11 /2 t t
5
Rt AN 1

() =

It is easily verified by direct substitution that this is indeed & solution
of the variance equation which satisfies the initial conditions stated above.

The optimal time-varying gains can now be obtained at once from the
relation K(t) = z(t)H'R"l, they are:

K12 (6) = 6%/at), oy () = 83/20(8), ki (8) = +2/20(t);

vhere
a(t) = t5/20 + rll/p.
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pom — o

d:”;l/dt-1 - tb'/ha 101 % tl*/ha 0
(3.5) &yfat | = | -t/ea 0 1+ T+ tfealz, + | |
A 2 A 2
-t3/ea 0 0 t°/2 0
A I ] B ) B I B

This differential equation is difficult to solve. Considerable
simplification is obtained by introducing & new set of state variables:

A A 2

wl—x5 2xl=twl+wz+1:w3

Wy = 2xl - tx2 X, = twl + w5,

w3 =X, - txj, x3 =Wy

Then by (3.5)

I - R 2 3,71 .7 2, ] B
aw, /at -t e -t e -t M| | Wy B /201 0]
dw,/at | = 0 0 0 W, 0 |zq + | -t|u.
dw_/dt
_3/4_0 0 o_sz_o_ 1

The transition matrix corresponding to this equation is

B/a - 8/2a -(r _ 61/2)/a_

(s, ©) =] 0 1 t -7

0 0 1

where
BT) = T0/20 + 1 1 /o, (b, 7) = (67)/8, (s, ) = (87 - ©2)/6.
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Thus the transition matrix corresponding to (3.5) is found to be

-

Y(Q)(t , T) =

4, Results:

a-6t2/2 (t-t)a-(y-ot )72/2
-5t a=(y-57)t
-5 -(y-87)

(12/2-t1)a+(5+71-6r2/é)t2/é

o + (p+ YT - 6’:2/2)1:

B+ yT - 812/2

Using the program appearing in Fig. 1 we obtained the covari-

ance matrix for the system (3.1) with Q = 0 and R = .5.

At t = .95,

-

and actually was computed to be

The transition matrix of the optimal filter as computed by sampling
the optimal filter gain at intervals of

. 35267k . Th2hT275
1.5631005
sym.
-
. 267451 <Th2k271
1.5631005

sym.
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the variance matrix should have been:

. 78155026
1.6453690
1.7319673 |

—

. 78155027
1.6453%91
1.7319676

.05 was, at t =1




. 72218 . 79251 .lL:L728-1
o1, 0) = -.55489 .58507 83k
-.55461 -.41522 8312

and should have been

. 722222 . 791666 16666
(1, 0) = | -.555555 .583333 .833333
-.555555 k16666 .833333

This shows that the sampling is being done correctly. Accuracy of the

transient can be improved by increasing the sampling rate.

- 341 -



JAN. 264 1965
BEGIN
LOAD _ 05¢2Z212D24PCo TaD3s [eVOIONeGSeZReFSeMSaRNIND
MULT RN«HS 21
TRANP HSe HT s
MULT HTe«21» 22
TRANP FSs 1
SUBT ZRs 1o 23
TRANP GS» GTo
MULT GSe+QNy 27
MULT 27+GT 29
JUXTC 23 22 24
JUXTC 29 FS 25
JUXTR 24 25 26
MULT 5 T T1
ETPHI 26 T1+28.T2
MULT T2+D2, D4,
ADD D4 D3 Ds
RICAT VO+28+21+ D+PCy VOsKNsAL,
ETPHI 264 T+28.T2
MULT T2 D2 Da
ADD D4 +D3+ D
HEAD 1TRANP KN KF o
MULT KF+HS 2
SUBT FSe 2 CF o
ETPHI CFs TePHos
MULT PHs 1o I
RINT Ti1o VO« VAR
ADD Tlse To Tl
ADD Zle To Z1
RINT Zl. Ie X
RICAT VO«28421s DsPCy VOIKNsAl,
1F NDesZ1 +HEAD 1
END
5 . 1
5
Z1 1
0
D2 3
(o} le 0
PC 4
o] o]} o] le
T 1
ol
D3 3
(o] 0 ol
1 3 3
le o] ¢} le
0 [¢] 0 1e
vo 3 3
0 [o] 0 o]
(o] o] (o} 2
QN 1
(o]
GS 3 1
o} le 0
ZR 3 3
o] (o] 0 o) [0}
0 o] o] o]
FS 3 3
le 0 0 [a]
1. [0} [o] 0
Fig. 1
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CHAFTER XIV

10SS OF CONTROLLABILITY BY SAMPLING

1. Description of the Problem: We take a transfer function; after obtaine

ing an irreducible representation and discretizing, we find the "deadbeat"
control law., This control law is a function of the sampling interval and
we will examine the behavior of the control and the closed loop transients,

particularly in the vicinity of points where controllability is lost.

2. Theory and References: In addition to Chapter VIII,see: [1] R. E. Kalman,

"On the General Theory of Comtrol Systems", Proc., lst International Congress
in Automatic Control, Moscow (1960); published by Butterworths, London (1961),
[2] R. E. Kalman, Y. C., Ho and R. Naregggg,"Controllability of Linear
Dynamical Systems", Contributions to Differential Equations, vol. 1, no. 2.

We will preface our results with some remarks about deadbeat control

in general. Consider a completely controllable system

X

k+1 = B T I

We assume that det ® # O.

Deadbeat control of a sampled system is any control law which takes

the state of the system to zero in finitely many (=N) steps. Since

1 e -
(2.1) x, =-0x =0 ll"uo+<I> 21"u1+...+<I>I‘

+ T'u

n=2 Nel

it is clear from complete controllability that deadbeat control exists and
that we never have to use more than N = n steps. However, the control
law is generally not unique, This is because (2.1) admits many control

sequences

Uys Wis soes Yyg
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as a solution. Even if N = NO = pinimum number of steps necessary to take
every state to 0, the solution may be nonunique. There is one case when
the solution is unique (and No =n): if m =1, the vectors

Q_;F, ceey @‘NP are linearly independent and span the state space if and
only if N = n, In this case we may conclude that any method which takes

every state X to O in n steps must yield the same control law,

Thus (recall Chapter VIII) we let Q =1, R =0, and Q =R = 0
for 1= k <n, and compute a time -varying closed-loop control law using
the sampled data riccati equation. According to the preceding considera-
tions, we must thereby obtain & control law which is in the case m =1
identical with the unique deadbeat control law (for if not, x;Ixn f 0 for
some vector X s which would contradict optimality.) In the general case,

m# 1, the situation is very much more complicated.

The riccati equation usually yields a time-varying control law., In

the present problem a special situation arises, as follows,

Iet the control law given by the riccati equation be

ul{= -kak, k=0, ey n-l'

It is a most interesting fact that KO also defines a deadbeat control law,

In other words (recall uniqueness), we have along every optimal trajectory

(2.2) w = - Kx = - KX, k=0, oas, n-l,

According to this equation, we can always use a constant control law defined
vie X . This fact is well known (see [1]); but the proof usually requires

ad hoc argument. Here we shall give a direct proof based on the riccati equa-

tion.
First we note that the optimal transition matrix @, corresponding
to the state transition to Xn-i+l is given by
- B { =
(2.3) Oipq = I - r(@l ces @fr) Oy eee @i] i=0, ees, n=l,
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We prove this by induction. d)l is determined by the requirement

0= xn = qyxn-l + 1-\ulrx--l‘;

hence

and.

In the second step,

O=x)=03x ;=0(®x ,+Iy );
hence
- b
k o=~ (@lr) o, @
and.
=0 - #
o, =0 r(@ir) o, 2.

The general case may be proved similarly.
So far all calculations are valid for any T.

Now we shall assume that m = 1 and write I as Y. Then

(2.4) ¢i @'kv =0 for all k=1, ..., 1.

(2.4) shows s by complete controllability, that the n-fold application of
<I>n = ((I) - YKO) will take every state into 0O in at most n steps. Since
there 1s only one way of accomplishing this R KO defines the optimal control

law., Thus the time-optimal control law may be computed by the riccati equation

when m= 1.
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~ To prove (2.4), we note that
(2.5) (ap* = vHar/|ar®

for any matrix A.

If k

i

1, (2.4) follows at once from (2.3) and (2.5).

If k =2, we calculate

-2, _ 151 1 2 -1
(IJn(I) Y = {I - w (Dl see Qn—l“@l ewe Qn—lY“ Ql L Qn_l]Q Y‘

Put

by direct computation. Hence, using (2.5) for k = 1,

220 % = 0 o™y = 0,
n
the general case is established similarly.

This is the deadbeat transition matrix for the last step. Recursively

define
i i

!
o, -=0=-T(mo *T)'T o *@
il j=1 "7 j=1"

Pz =@ (colmzl“)ﬂcacpch-

These define the deadbeat transition matrices q& from the (n-i)ty

step to the (n—i+l)th step. We claim that

q&jqfkr =0 for J
k=l, X NN jo

l, ooy i,
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Proof: By induction on 1i.
qiqflr =1 - 1Thr = 0.

Crucial to all this is the property of controllability. In fact, con-
trollability for a single-input nonsingular discrete system cen be charac-
terized as the existence of a K such that @ - I'’K is similar to a single
dJordan block with zero eigenvalue. Notice that no & whose rank is less than
n-1 can be single input controllable, We see also that controllability of
a discrete system does not guarantee that we can transfer from any state to

any other unless & is nonsingular.

Even if [q5 '] is derived from a completely controllable continuous
time system it is possible Ffor complete controllability to be lost by the in-
troduction of sampling. This may occur (see the reference [2]) when the

system is discretized with an interval ¢ such that

= q
Im[xi - xj] = 2r -

(2.6)
q=il, 12, coey

for any two eigenvalues Ay xj such that Re[xi - hj] = 0.

This condition is necessary and sufficient for a single input system
and is independent of the choice of I'. That is the system is no longer
single-input controllable., Recall that this occurs if the discretized system

matrix has more than one Jordan block associated with a given eigenvalue.

5« The Specific Problem. We take the transfer function

(3.1) T(s) = 5+ 3/2 5
(s42) (% + T (® + 2L)
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and an irreducible realization

H=[1, 3/2, 0, 0, O}

0 1 0 0 oT
0 0 1 0 0
F= 0 0 0 1 0
0 0 0 0 1

L-9.620509 -4 8103254 -10.966226 -5.4831135 -2. |

gt = [ 0 0 0 0 1.

We easily see from (2.6) that controllability will be lost when o
is a multiple of 1.5, 2, 3, or 6. ILet

0 1 0 O\
™

- = 0 0 0
3
0 1

0

(@]
o
1

correspond to a realization of the factors (s2 + 1r2/9) and (s2 + 2Jr'iT2/9)
(3.1). Iet eFF = A(t). Iy examining [G, A6, A°G, A%] for

cos 1—3T-t sin %’c 0 0
i i
-sin =t =t
A sin 3 cos 3 0 0 ’
0 0 cos —2—%0 sin -2—1%
0 0 ~sin 2-—1;1: cos -z—%t
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for t =0, and appropriate G vectors, we conclude that the maximum

controllability rank r is

[s] r
32 k4
2 3
3 3
b 3
9/2 k4
6 2

The two periods, 6 and 3 are commensurable so we might ask how the
gains differ for ¢ and 6 + g. Since, except for the effect of the root
-2, ® will be the same for ¢ and 6 + g we might hypothesize that the

120 46 be negli-

gains will be the same after ¢ is large enough for e
gible.

We would also like to see the closed loop transients for o and
6 + 0, and the transients and required control for ¢ in the vicinity

of the poles,

4, Results: In Fig. 1 appears the program used to calculate the deadbeat

control law

[kl, K, kg K, k5].

ks ko k3 and k5 are graphed in Fig. 2, 3, 4, and 5. Notice how sensi-

tive they are to the sampling period. E.g.. k. in neighborhoods of

2
0=29, q=1,2, ..., goes from =w to -w,

In Fig. 6 and T appear the grapns of kl and k2 for o in
[6, 9.4]. These show very well how the gains differ between say .3 and
6.4 but by the time we get to 1.4 and 7.4 the differences are less than
10%, by 2.5 and 8.5 the differences are less than 1%. When the differ=
ences are large, the small o gains are larger of course, since the eigen-
vector associated with -2 must be taken to zero. After o becomes large

g =120 is essentially zero without control.,

- 350 -




- Next we examine the rank of the matrices

and

this is done with the program appearing in Fig. 8.
the pseudo-inverse iteratively, thus giving us some

sensitivity of rank.

1.45

105

1.55

1.95

2.00

2.05

£ W \J =N || SN | +

= W\

T, o

(G, 9, ..., 9G]

I
, ..l’ ¢I‘

The following table gives our

1072
107"
1072
107
1072
1072
1072
107
1072
1077

10

W = W\ £ W W AN = += ]

=

10°

10~
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Notice that we compute

idea of the numerical

results.

10”7
107

10'6

10
10‘LL

1072




2.95

300

3.05

3.95

ll'.

L.05

k45

k.5

4.55

5.95

- 6.0

N U F W

0

= W U

A e I A © | N | S R — R § ) B =

D
o9

05'

07'

+ 10

- 10

* 10

= 10

10~

1072

. 10-5

-6

+ 10

. 10-3

- 10°
-2

«+ 10

. 10'5
. 10'5

10

=k
-4

. 10-3

-4

] 10-5
* 10

- 10—3
. 10_5
2+ 107
1°10°
1 101
05 .

10-7
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W

B oo 4 W

.18 -

.22

3 . . .
+= + ol no
. 3

.
\V]
.

- 10

* 10

:Lo'br .

10"lL

-6

- 10

-k
-4

. 10-5
. 1077

.« 1077

-6

*+ 10

. 10-3

-4

1. 107
2 . 1072

Y lO -7
. 10°




. In general this table speaks for itself, both I’ and G giving
the correct answers except at 3 and 6 where the I’ rank is low. We !
must remember however that G was chosen to maximize the controllability;

it i1s not necessarily true that T’ will give us the largest controllability

rank., For instance if

0 1 0
F = G = o = 2m,
-1 0 1
then
1 0 0]
q): P=
0 1 0
and
[, ¢¢] has rank one,
but

[0, @] has rank zcro.

Certain gain and sampling interval interchanges were made. For in-
stance the gain K, 7 which is deadbeat for o = 2.7 was run with o = 2.8;
the results were not as unstable as we might have expected considering the

differences between the K values.

The following results were obtained:
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Oy OT stability

1.9 2.1 apparently stable
2.1 1.9 apparently stable
2.7 2.8 questionable

2.8 2.7 apparently unstable
2.9 3.1 apparently unstable
3.1 2.9 apparently unstable
3.3 3.4 questionable

3.4 3.3 questionable.

We were also interested in illustrating the lack of controllability
by showing a vector which was ignored by the control. We noticed that Kg
was orthogonal to [1, -2, 4, -8, 16] to about six significant figures, so
using this vector for initial condtion an uncontrolled run and a run using

Kg were both made and were indeed the same to about four decimal places.

Using the program appearing in Fig. 9 we obtained transients for
various sampling periods. In Fig. 10 and 11 appear the responses for
g =25 and ¢ = 8.5. As we have seen, the gain matrices are nearly the
same, but we may wonder what is the effect of holding the input over three
times as long a period. The graph shows that the value of the output and
the wave shape are the same at corresponding control points. The printed

output shows that the entire state is the same.

The following table shows the nwuber actually obtained

Control point Yo.5 ¥g.5 % 5 ug, s
0 1. 1. 7.0253 7.0428
1 5T73 5800 5.1429 5.1557
2 pckal 4975 L. 4603 L. h6ko
3 667k .6662 2.5650 2.5778
L . 0260 .0302 -0.0175 0.0000
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. When we tried to obtain the transient near a pole we encountered
one of TRNSI's drawbacks. If X is large enough for significance, the
control exceeds the print format. So we used the program in Fig. 12 and
computed transients for o = 2.6, 2.8, and 2.9, The outputs are graphed in
Fig. 13, 14, and 15 and illustrate beautifully how control energy and state

excursions build up as an uncontrollable point is approached.
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BEGIN

- LOAD T F G Tie 1 ZR D PC Z14RZ ON ND N3
HEAD 2EAT Fe TePHsINs
MULT INs Gy GM,
TRANP PH, PT
TRANP GMs GT
EQUAT I P 1 X0 Z1 1 Z1+e 6
HEAD 1SAMPL. PT P GT Z1 ZR D PC P KT AL
TRANP KT K
RINT Ke K
“LLOAD T
1F Te TWHEAD 2
END
T 1
»1
F S
[¢] le
¢} 0 e
-0 (] o} 1e
(o] o] : 0 8} le
~9e¢620651 ~448103255 ~10e966227 ~5¢4831136 =T
G 1
le ?
Tl 1 i
o116 .
1 5 |
1. !
le .
1.
le
1e
ZR 5 S
o}
(o] !
0 |
o ;
(o}
D 2
(o} 1. !
PC 4
[o] Se
Z1 1
(o]
RZ 5
ON 1
le
ND 1
44995
N3 1
2e¢4
T 1
6l

Fig. 1
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k] vs. SAMPLING PERIOD o

ki
100
10
[+ ++
b .
0.1 1 1 { I | 1
"0 1 2 3 4 5 6
o —
Fig. 2




ko vs. SAMPLING PERIOD o

Ki
103
+
]02:
N |+ +
i +
+
10
1.0 I+ ~ |
0 2 3
Fig. 3




_ ks vs. SAMPLING PERIOD o
ki |
102}~
- _ +
i +
10
n +
i +
_ s _
1.0 B
N +
B +
i +
10 : :
0 3 4 5
O —
Fig. k4




ks vs. SAMPLING PERIOD &

ki |
—a+ -
10 -4+ ” —]+
N n -1+ r
1.0
n - +
X Al - A
i +M -
| | |
O'.IO 2 3 6
O —
Fig. 5
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ki vs. SAMPLING PERIOD o

102

10

1.0

0.1

+

Fig. 6
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ko vs. SAMPLING PERIOD o

Ki -
+
102:
N +
+
10
i +
+
10 +
— +
| | |
0'16 7 8 1) 10
g —
Fig. 7
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BEGIN

LOAD F T G Pl.P2
PIZER Pl4P2
HEAD 1EAT Fo TePH IN
MULT IN G GM
MULLT  PH GM 22
MULT PH 22 23
MULT PH 23 24
MULT PH 24 25
MULT PH G 32
MULT PH 32 33
MULT PH 33 34
MULT PH 34 35
JUXTC GM 22 41
JUXTC 41 23 42
JUXTC 42 24 43
JUXTC 43425 44
PSEUC 444 1wl RK PRINT
JUXTC G 32 41
JUXTC 41 33 42
JUXTC 42 34 43
JUXTC 43435 44
CLEUO 44, 1wl RK PRINT
LLOAD T
IF Te TAHZAD 1
END
F [5 5
vl le
§) le
9] le
< le
~94,62063L9 —4 48103254 ~10e6966226 -544831135 -2
T 1 1
led
s = 1 T )
J loe
P1 1 1
« 001
P2 1 1
1.
T 1 1
led5
T 1 1
165
T 1 1
1455
T 1 1
l1e6
T 1 1
149
T 1 1
1495
Fig. 8




JULY 30+ 1965
BEGIN
LOAD Z14T1e G 15 F ZR D PC X T T2 H
EAT F"T1 PH IN
MULT IN G GM
HEAD 2EAT Fe TeP1sIN
MULT INs Go G1
TRANP P1, PT
TRANP G1, GT
EQUAT 15 P
SAMPL PT P GT 21 ZR D PC P KT AL
TRANP KT K :
RINT K K
EQUAT X X1
TRNSI Z1 K Z1 X1 PH GM H T2
LLOAD T T2 N
IF Z1 Z1 HEAD 2
END \
Z1 1
0
T1 1
ol
G 1
0 le
I S
le
[¢] le
0 0 le
6] 0] le
Y 0 le
F 5 "
o] le
9] 1.
0 le
0 1e
-F¢6206509 -4.8103254 ~10e966226 ~544831135 -2
ZR 5 5
0
[¢)
o]
[¢]
o]
D 2
o} le
PC 4
0 o] Se
X 1
1.
T 1
25
T2 4
25 o1 1561
H 5
Fig. 9




8e5

T2
8¢5

51l

' Fig.r 9
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10

OUTPUT
H

Transient Response for
c=2.5

TIME

Fig. 10
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(4%

8 bt Ot 9¢ (44 8l vl

gg=° 40} ISNOLSIY LIN3ISNVAHL

Ol

1Ndino

Fig. 11
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SEGIN

LOAD Z1+Tls G IS F ZR D RPC RZ T ND NI
EAT F Tl PH IN
MULT IN G GM
HEAD 3EAT Fe TsP1s+IN —
MULT INs G G1
TRANP P1, PT
TRANP G1, GT
EQUAT IS5 P
SAMPL PT P GT Z1 ZR D PC P KT AL
TRANP KT K ’
RINT K K ‘
EQUAT 15+ X Z1 T3 ‘
HEAD 2MULT K X -U
JUXTR X RZs 1 :
JUXTR 1s+=U 2 ;
HEAD 1RINT T3, 2 XU :
MULT GM -U 3 i
MULT ~PH X X .
SUBT X 3 X :
ADD T1+T3, T3 i
JUXTR X RZ 1 i
JUXTR 1 ~U 2
IF ND T3 HEAD 1 :
ADD T ND ND
1F N1 ND HEAD 2 !
LOAD T ND N1
IF Z1+Z1WHEAD 3
END
Z1 1 3
O t
T1 1 i
.1 l
G 1
0 T. ,
I 5 :
le K
0 le
0 0 Te
0 0 le
) S e
F g
U ie
0 1.
U L e
0 1e
=T 6206509 —4.8103252 =T0+966226 54831135 =z
ZR 5
0
0
= I
0
0
Fig., 12
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2655

N1
157

27

NU
2465

NT
163

Fig.r 1? i
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OUTPUT

uy =-5.80  Transient Response
up =-3.95 for 0=2.6
uz = -5.67

Ug = - 3.79

ug = 0.02

Fig. 13
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OUTPUT

TRANSIENT RESPONSE for o=2.8

Uy < 450
Up = 6.27
|J3" - 15.96
ug = - 14.06
us = 005

Fig. 14
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OUTPUT

12

10

TRANSIENT RESPONSE

FOR o0 =2.9
u = 4573
up = 4737
U3 =-5731
Ug = - 5517
ug = 017




CHAPTER XV

COMPUTATION OF A MINIMAL REALIZATION

1. Description of the Problem: Given a p X m matrix Z(s) of transfer

functions we wish to obtain a triple [H, F, G] of matrices such that
-1
Z(s) = H(sI - F) "G.

Note that 7 is then the formal Laplace transform of the impulse response
matrix HeFtG.

The method used in this chapter was developed by B. L. Ho and has
the advantage of directly using experimental input-output data, when 2
is interpreted as the z-transform of the sampled impulse-response function
H@kG, k = integer.

Furthermore, in the two examples waich we have used, the method
appears to be well suited to computation, although as usual, a large
spread in the eigenvalues will occasion numerical scaling problems. Because
of these two favorable aspects of the method, it appears to be much belter
adapted for practical application than the methods appearing in the references
2 and 3.

2. Theory and References:

[1] B. L. Ho, SIAM J. Control, 1966.

[2] R. E. Kalman, "Mathematical description of linear dynamical
systems", SIAM J. Control, 1 (19463) 152-192.

[3] R. E. Kalman, "Irreducible realizations and the degree of a
rational matrix", SIAM J. 1965.

[4] J.R. Ragazziui and G.F. Franklin, "Sampled-data control systems",
(1958) McGraw Hill.
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Briefly we can describe our particular variant of Ho's method as
follows:

Let zij(i) denote the elements of Z(s). ILet sijk ienote the
coefficient of s in the expansion of Zij in powers oﬁh s, Let 6i
denote the degree of the least common denominator of the i row of Z(s),
b the degree of the l.c.d. of the jth column, and a = m?x (max(&i, ui)).

Then we form the matrices

®ij1 ®ij2 - Sija
S, . = .
1j 132 5133 --- ®1ja+1
Sija 51 ja+l Sijoa-1
5ijo 8537 - 51 ja+l
S.o= | 133 Pijh ST Sijanl
Ji
Sija*l  Sijate T 7" Bij2a |

S = [sij], and % = [zij],

m
]
=

3 ooy P

j=l, eeey m

o
|

= [c ]

1’ %a+1’ %2a+1’ ) S(m-1l)atl
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atl

e
I

r2a+l

Lr(p-l)aﬂ

where ci is the ith column of S and ri is the ith row of S.

At this point Ho proceeds by computing nonsingular matrices P and
Q such that

Then

X . X
!
X
HQ = [H . X].
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Then H, P, and G (which are respectively pxn, nxn, and nx q
matrices), constitute a minimal realization of Z(s). The x's represent
terms for which no practical or theoretical use is known at present,

We proceed as follows,

Assuming that m 2 p, form the p X p matrix S8S' = B and apply
DECOM, This will give us nonsingular matrices T and R such that

ko]
n
RTSS'T'R' = .

However, this matrix is p X p, whereas PSQ is p X q. Hence we let
P=RT and Q¥ = S'T'R', Then we claim that

hy
w
o)

PSQ* =

16

and

H' = [H x].

The reason for this is that Q¥ may be made equal to Q by appending
to Q¥ m - p columns independent of the previous columns of Q¥%., This makes
a nonsingular Q, and therefore Ho's formulas for a realization may be

applied.

For computational purposes, we may just as well use Q¥ rather than

Q ©because we are uninterested in the last m-p columns of PSQ anyway.

%A. The Specific Problem: We take

83-s2+l 1 -55+s2-2
I 158 +1 s +1 ~1l.5s -2
s

55-95 -s+1 -se+l 53-3-2

e —



Then

See Reference [3].

2|

-1

-1

-2

-1

-2

-2

-105

O

o~

-2

"lo 5
-2

1.5

-1.5

l.5

-2

=2

-1
-2

-1

-1

-1
-2

-1

-1

-2

-2

-1

(&

O

0

-2

-

-2

1.5

1.5

-1.5

1.5

-2

-2

-1
-2

-1

-1
-2

-1

]
I

- 377 -




1 -1 0 1
G'= |0 0 0 1
-1 1 0 -2
LI -1 0 1
H=]0o o0 1.5 1
1 9 -1 1

0 0
0 0
0 -1

-1

-1

a4 1
o 1
-1 -2
0 -2
1.5 -2
-1 -2
-

LA, Results: Applying the program appearing in Fig. 1, we obtained an F, G,

and H and checked these by computing their impulse response.

were excellent, At t = 3

significant digit,

The results

the errors were less than four in the seventh

The accuracy of the results was caused by the favorable circumstance

of the zero eigenvalues.

In the next problem we shall see how numerical pro-

blems can arise when nonzero eigenvalues are introduced.

3B. The Specific Problem:

We consider

3(s+3) (545 6(s+1 2(s+7) 25+5
(s+1%sizggs:h% (s+2§(;+%) (s+3)(;+47 (s+2)(s+3)
- 2 1 2(s-5) 8(s+2)
z(s) = (s+3)(5+5) s+2 (s+1(s+2)(s+3) (s+1)(s+3)(s+5)
2(s2+z5+18) - 28 1 2(5s2+275+54)
i (s*1)(s+3)(s+5)  (s+1)(st3) s+3 (s+1) (s+3) (s45)

We will delineate

brackets

S, .
14

with solid brackets and Zij with dashed

- 378 -




-18
60

=192

-552
2256

337

e

-18
60

-192

-18 60
60 -192
-192 648
648 2328
-27328 8760
13 -552
=552 2256
2256 9120
-9120 36672
3672  ~147072
25 51
-91 337
337 ~1267
-1267 4825
4825 18571

- 379 -

B B
-192 648
658 2328 !
258 8760 :
8760 | =-3%12 :
-33912_ 133368 j
A
o056 | 0120 |
-9120. 26672 :
36672 -1&7072:
-147072 589056:
589056 | -2357760 |
- J
. 3
537 1067
-1267 4325 1
4825 -18571 :
-18571 72097 :
72097_ -281827 _,I




Clearly these matrices are each determined by a ten-vector. We

shall write these ten-vectors for the remaining Sij'

1, 1« [3 3 -18, 60, -192, 648, -2%28,
8760, =312, 133368]
1, 2 = [6, -%0, 132, -55, 2256, -9120,
673, =-147072, 589056, -2357760]

l: 3’: [2: "7: 25: ‘911 337; '1267: 1*855) '1857]-:
72097, -281827]

l:L" = [2: "5: 13: "35) 97: "275: 793) "2315
6917, -201951]
2, 1= [0, 2, =16, 98, -54k, 2882, -14896
79938, -384064, 1933L442]

2, 2= [1, -3, 9, -27, 81, -243, 729, -2187, 6561,
-19683]
2, 3= [0, 2, =22, 110, 430, 1502, -hkok2, 15710,

-48910, 150302]

2, 4~ [0, 8, =56, 320, -1712, 8888, -45416,
230000, -1158752, 58200081

3 1% [2, -4, 26, -172, 1010, -552k4, 29066,
-149692, T61570, -384T7204]
3, 2% [-2, 8, =26, 80, -2k2, T28, -2186, 6560,
-19682, 590481
3 3= [1, -3, 9, -27, 81, -243, T29, -2187, 6561,
-19683]
3, 4= [10, -3, 163, -780, 3834, -18996, 9Lk82,

=470940, 2350314, -117384361]
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~Rather than use the impulse response to check this decomposition,
we shall use the following relation:

k

HF G = 1.

s, 3x
LB. Results: Using the program appearing in Fig. 2 we found S +to have
rank four and computed HG and HFG +to be the matrices in Fig. 3. These
atrocious results were not unexpected considering that S has an element

spread from two to eleven million and the spread in SS' would be even

worse.

To obtain tetter conditioning some simple transformations were made.

The rows of S were multiplied by
[l, l’ ol, l., 'Ol’ l, l, ol’ .l, -Ol, l, l, .l, ol, .Ol]

and the columns of S by

(y, 1, .1, .1, .O1, i, 1, .1, .1, .01, 1,1, .1, .1, .01, 1, 1, .1, .1, .01].
Despite the lack of intenrive analysis which went into this choice, the
results as obtained by the program in Fig. i were tremendously improved.
Fig. 5 displays HG and HFG which are accurate to about for significant
digits, Fig 6 shows HF6G and HFTG in which the largest error is about

2%. These errors will increase as the power of F increases. Presumably

more careful preconditioning could further improve the accuracy.
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BEGIN
LOAD SeSBe Goe HePLP2,11

PIZER P1+P2s
TRANP So ST

i MULT STe S» P
; DECOM P, Tle TWERWPE,y Ee«RKo
i MULT PEs To Te
! MULT TeSTe = Py
TRANP T Xo .
MULT Pe S 2
MULT 2¢ Qo M
MULT Ps+SBo 1,

MULT 1s Qo FBe
MULT Ps G GB,

MULT H Q ‘HB
RINT E E Me: E FByFB GBysGB HB+HB

MULT 11+GBo GR

MULT I14FBo 3
TRANP IT., Il
MULT HB.I1 , HR
MULT 3,11 "FR
LOAD AJND Z1
MULT HR GR IR

RINT Z1. IR+ IMR

ETPHI FR A PH

HEAD 1ADD Zls A Z1
MULT PH GR GR
MULT HR GR IR
RINT 21, IRsIMR
IF NDe+Z1+HEAD 1
PUNCH FRe FeHRes H4GRs G
END ‘
S 12 12
1e -1 0 le
[¢] 0 le -1, le
(¢} =2 -1a ¢] le
[s} o] 0 1. [o]
le [¢] -2 0 o)
le o} 0 0 le
o} (o} 0 -2 [o]
o] le o] (o] [o)
le o] 0 0 ~2e
[o} 0 0 (o] [o)
1e5 le 0 0 le
le [o] [o] ~1e5 -2
o] 1¢85 le 0 0
1e le (o] o] ~1e5
-2 ) 15 le [s}
o] le le o] (o}
-1e5 -2 (o] 0 le
0 [e] 0 le 0
(¢] 0 -2 0 0
[s] le -9, -1le le

Fig. 1
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JULY 30+ 1965

BEGIN

LOAD S1 S2 S3 5S4 X1 X2 V1 V2 V3 V4 Pl P2 HR Bl B2 DI LM
MULT SleXlo Gl

MULT S2 X1 G2

MULT S3 X1 G3

MULT 5S4 X1 G4

SJUXTC Gl G2 1

JUXTC 14G3 2

JUXTC 2 _Ga G

MULT S1 X2 Ql

MULT S2 X2 Qe

MULT S3 X2 Q3

MULT S4 X2 Q4

JUXTC GlsVli 3

JUXTC 3 Q2 4

JUXTC 4 v2 5

SUXTC 8 Q3 6

JUXTC 6 V3 7

SUXTC 7 Q4 8

JUXTC 8 vé4 s8

SJUXTC S14S26 =)

JUXTC 9 83 10

JUXTC 10 S4 SR

MULT DI SR SR

MULT SR IM SR

TRANP SR ST

PIZER Pl P23

MULT SReST BQ
PSEUO BQe+ 1BIsRJIIPRINT
DECOM BQ 1S TER P E RK
RINT ERER SBSB SRsSR  GesGR HR HR
TRANP T TTo

MULT Py To T
TRANP P P
_MULT STeTTo 12

MULT 12+ Po (e

MULT T DI T

MULT LM Q Q

MULT Ts+SBo 13

MULT 13+ Qs 14

MULT Te G 15

MULT HRs Qo 16

RINT 14y F 15 G 16 H
MULT 144Bl s 17

MULT B2 17 F

MULT 16 Bl H

MULT 82 15 GX

RINT F F H HGX G
MULT H _GX 18

RINT 18 s

MUL T F_G&X GX

MULT H GX 18

Fig. 2

- 387 -




RINT 18 s
MUL T F_GX GX
MULT H GX 18
RINT 18 S
MULT F GX GX
MULT H GX 18
RINT 18 s
MULT F_GX GX
MULT H GX 18
RINT 18 §
MULT F GX GX
MUt T H GX 18
RINT 18 §
MULT F _GX GX
MULT H GX 18
RINT 18 s
MUL.T F GX GX
MUt T H GX 18
RINT 18 s
M T £ GX GX
MULT H GX 18
RINT 18 §
MULT F GX GX
MULT H GX 18
RINT 18 S
MULT E_GX GX
MULT H GX 18
RINT 18 s
i MULT F GX GX
) MULT H GX 18
: RINT 18 S
END
S1 15 S
3 3a ~18a. &Qa =192,
3o -18. 60 -192 648,
=18 6040 ~192. 648, 2328,
60 -192. 6484 ~2328. 8760
=192, 648, 2328, B760a =33912,
o] 2o -16. S8 -544 4
2e =16, 98, =544 o 28824
=16, 98e ~544, 2882 —14896,
98, ~544, 2882 =~14896&, 25938a
=544, 2882 -14896, 75938 =-384064
2 -G o 26a =172 1010,
-4, 26 =172 10100 _55240
26, ~172 10104 5524, 29066
=172 1010 -5524, 29066 =149692«
1010, ~5524 4 29066, 149692, 76157Q4
52 15 S
<X} =30, 132 =552 a 2256,
~30, 132, -552 2256, ~9120e
132 =552 22564 ~9Q1204, 36672
~552 2256 -9120. 36672 ~147072
Fig. 2
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2256

-9120. 36672 ~147072 589056
le =32 Qa =P 7 8l
-3 Se -27 8le -243 0
Qe =27 A1a =243 4 729,
=27 8l -243. 729 -2187«
81a 243 729 =2187, 6561+
-2 8. -26 80 242
Ba =26a B0, =242, 228
~26. 80 =242, 728 -2186.
80 =282 228, ~21864 6560
=242, 728 ~2186., 6560 -19682,
S3 15 s
2e -Te 25, -1 337
=7a 25 ~-Q1a 337 =1267
2S5 -Ole 337 -1267. 4825
=-91e 337a. 1267, 4825 ~18571 4
337 =1267 4825 ~18571 72097
Q 2e =222 1104 ~430s
2 -22 110 ~430 1502
~22e 110, =430 15024 =4942a
110 «4300 1502, —-4942 ¢ 15710
=430, 1502, —4942 4 15710, =48910,
1e -3 Se =27 Bl
-3 Qo 2T 8la ~243 4
Fe -27e 81 ~243 . 729
—27e 8le 243 129 ~2187a
81l -243. 729 =2187e 6561
Sa 15 S
2 -5e 13, =35 97
-Se 134 =35 97a =275
13 -35, 97 -275 793
-33e 97 ~275, 793 =2315a
97 -2T75 e 793 -2315. 6817
o Be -56a 320 =1712a
Be -56. 320 ~1T712 8888
=56 320e -17124 8888, -45416.,
32Ce -1712 8888, ~-45416, 230000,
-17124 A888e —45416a 230000, -11587524
10 ~36. 162 =780 3834
=36 1624 =780 3834, =-189Q96,
162 ~780 3834, -18996. 94482
=780 3834, ~18996. Q4482 o ~470940
3834. -18996. 94482« -470940 2350314
X1 =) 1
le
X2 =] 4
[o] le
Q 1a
(o) le
Q le
A 15 i
648, -2328. 8760 -33912 133368,
2882, -14896 75938 -384064., 1933442

Fig. 2
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~5524 « 29066 <149692, 761570, -3847204.
ve 15 1
=-9120. 36672 ~147072. 589056, -2357760.
-243 4 729, ~2187, 6561, -19683
728, -2186, 6560, -19682., 59048
v3 19 1
~1267 e 4825 -18571. 72097, -281827
1502, =4942 o 15210 -4 8910 1 50302+
=243, 729 -2187., 6561, ~-19683.,
M4 15 1
=275 793, -2315, 6817 -20195
8888, =4S41 6, 230000 =1158752, 5820008
-18996. 4482« ~470940, 2350314, =~11738436.
21 1 1
¢« 000001
P2 1 1
le
HR 3 20
3 3e —-18. 60 ~192.
Sa =30, 1324 =552, 2256+
2 ~Te 25 -9l 337.
2a =S a 13 =35, Q7
o] 2e =16 P8 =544,
1a =3 Qe 27 81l
o] 2 -22 110 =430
Q S =568, 320 i 2 -]
2e -4 26 ~172, 1010
=2 Ba =264 80, =242 ¢
le =3 Qe -27e 81,
10, =36, 162, =780, 3834
B1 15 12
1 2
las
le
le
l A
le
le
la
le
Fig. 2




le
le
B2 : 12 15
) WY
le
1.
le
lae
le
le
le
1e
la
le
ls
DIl 15 15
le
Fig. 2
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AUTOMATIC SYNTHESTS PROGRAN

PAGE 2%
TMATRIX S
NUMBER OF ROWS 3 NUMBER OF COLUMNS &4
=0,60633675E 05 =0, 8253821I8E 05 =0, 3T0008I2E 05 0.811I35172E 05
0.%8906875E 05 0.52736579E 05 0.61705748E 05 =0.%0652142E 05
=0.97309955E U5 =0.12957074E U6 =0.53789978E U5 U.126563344E 06
MATRIX S
—NUMBER OF ROWS 3 NUMBER OF COLUMNS %
-0.15341415E 11 -0.25053193E 11 -0.46605802E 09 0.25663784E 11
0.11584865E 11 0.19123507€ 11 -0.19607167TE 09 -0.19742244€ 11
~0.24571605E 11 -0.40141921E 11 -0.69948262E 09 0.41134847E 11

Fig. 3
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BEGIN .
LOAD S1 S2 S3 S4 X1 X2 V1 V2 VY3 y4 Rl P2 Ho 51 82 01 LM

MULT SleXls Gl
MULT  S2 X1 G2
MULT 53 X1 G3
MULT  S4 X1 G4
JUXTC Gl G2 1
JUXTC 1 .63 2
JUXTC 2 Ga& G
_MULT Sl X2 Ql

MULT S2 x2 Q2
MULT S3 X2 Q3
MULT S4 X2 Q4
JUXTC Q1 4\ 1s a
JUXTC 3 Q2 4
JUXTC 4 y2 5 -
JUXTC 5 Q3 6
SAUXTC & U3 v 4
JUXTC 7 Q¢4 8
JUXTC. B \a S8
JUXTC S1+824 9
AUXTC ¢ - S3 10
JUXTC 10 S4 SR
MULT. DI SR SR
MULT SR LM SR
FRANP—SR-v SFv

PIZER P1+P2s

—_— MUT SRSTe - 8Q.
- PSEUO BQa+ 1BI+RJIWPRINT

DECOM BQ 1.S T ER P__E RK
RINT ERJER SBeSB SRsSR G1GR HR HR
IRANP Ta ITT.

MULT Pe To T
TRANP P P

MULT ST+TT, 12

MULT 12¢ P Qo

MULT T DI T

MULT M Q 0.

MULT TeSBoe 13

MUIL T 13« Qo 14

MULT Te G 15

MULT MHRs Qe 16

RINT 149 F 15 G 16 H
MULT 1481 17

MULT 82 17 F

MULT 16 B1 H

MUL.T B2 15 GX

RINT F__F H H GX G
MULT H GX 18

RINT 18 S

MULT F GX GX

MULT H GX 18

RINT 18 s

Fig. 4
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MULT F GX GX

MULT H GX 18

RINT 18 S

MUL T F_GX GX

MULT H GX 18

RINT 18 S

MULT F GX GX

ML T H _GX 18

RINT 18 S

MULT E_GX GX

MULT H GX 18

RINT 18 S

MUL.T F GX GX

MUL T H GX 18

RINT 18 S

MWL T F GX GX

MULT H GX 18

RINT 18 S

MULT F &X GX

MULT H GX 18

RINT 18 S

MULT F GX GX

MULT H GX 18

RINT 18 S

MULT F GX GX

MULT H GX 18

RINT 18 - S

MULT E GX GX

MULT H GX 18

RINT 18 S

END
S1 15 S
3 3. ~18¢ 604 -192
e I ~18. E£Qa =192, 648
-18e 60 =192 648, -2328.
60, =192, 648, ~2327R.. 8760
-192. €48, -2328. 8760 -339ti2.
Q =2 -16a 98 a =548 s
2 -16e 98e -544, 2882
=16 98e ~544, 2882, -148%6,
G8e ~544. 2882. -14896. 75938
=544, 2882 =-148%968a 75938 ~384064 o
2 -4 0 266 =172 101Qs
=4 4 pl-TY ~1724 1010 ~S824
26 -~172 1010 ~5524. 29066
~172 101Qe =5524%. 29066 ~149632s
1010, -5524 29066, ~149632. 761570
e 1s S
S «~30. 132 -552 22%6
=30 132, 552 22564 =91204
132 -552 2256 =3120, 36672
=552, 2256 ~93120, 36672 ~147072
2256, ~-9120 36672, =147072, 589056

Fig. 4
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le N -3 Se =27 81l

=3 (=T =27 81, =243,
Ge —-27e 8l -243. 729
-7 81la =243 4 7294 2187
81l -243 729 =2187. 6561
=2 Ba =264 804 24D,
8. -26, 80 ~242, 728
BY-T- a0. —242 7228, 2186
80, ~242 728 ~2186. 6550
=242 728 -2186 6560 : 19682«
S3 15 S
2 =74 -&5 =Gl e 337
“T7e 25 ~91. 337 =1267.
254 =91 337, =127 L4825«
=-91le 337 -1267, 4825, -18571.
337 =]1267a ——l825 . -18571, 72097
[} 2e 22, 110 ~430
2 =22 110 =430 1502+
=22 110, ~430. 1502, ~4942.
1104 =430 1502, =494 15710
=430, 1502 -4942 , 15710, ~48910,
la -3 Qa -7 81,
-3 = -27 8le =243,
Qa =274 Bla 243, 729,
“27e 81 —243, 729 -2187.
81a =243 4 229, 2187, 6561
sS4 15 5
2a =G 13 ~35, Q72
-5 13 -35. ST -275
13, =35. Q7 -2 75, 793,
-33. 97 -27S. 793 2315
97, =275 a 793 =2315, 86817,
0 8e ~56 320 -1712
8. 56, 3204, -]712, 8888,
=56 320, ~-1712 8888, -45416,
3204 =1712 8888, 45416 2300600,
~-1712. 8888. —454 16, 230000, ~1158752.
10, =38a 1624 =780 3834
36 162, =780, 3834, ~-18996,
162, =780 3834 4 =-18996 Q4482
=780 3834 -18996, 94482, ~470940
3834 . =18996, Q4482 , =470940 2350314
X1 S 1
ll
X2 51 4
0] la
] le
0] 1la
0] lae
V1 15 1
648, -2328e. 8760, ~33912. 133368,
2882, =-14896, 75938, ~3840604, 19334424
~-5524 29066 =149692, 761570 ~3847204
Fig. 4
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va 15

=2120, 36672 ~147072a SRQ0SAa =2357760,
-243, 729 -2187., 6561 . -19683.
128, -21864 65604 =19682 4 59048
v3 15 1
~1267a 4825 18571, 72097 =281827s
1502 =-4942 . 15710, -=48910. 150302,
243 229a -2187a L5614 =196873
Va4 15 1
=275 793, =2315, 6817 L =20195
8888, -45416. 230000 -1158752. 5820008
~18996. QU482 a =470940 2350314 =1 1738436
P1 1 1
2000001
P2 1 1
le
HR 3 20
Sa 3a =184, 60, =192,
6 =30 132, -552 2256
2.a -Ta 2Sa =-=Q1la 337,
2e -5 13 -35 97
Q 2a -16, Q8 ., =544 o
le ~3. S =27, 81
_— o] 2a —22a 1104 =430
o} 8e =56 320 -1712e
2 -l 9 26a =172 1010 .
-2 8 ~26 8Q. —242»
le —3e = 27 814
10, ~36. 1624 ~780 3834,
B1 15 12
le
le
le
1a
le
le
la
le
le
Fig. 4




CTTT

le
| 1
L A2 12 15
loe
le
le ‘
. ;
1le
le
1.
le
le
le
J 1o
|
1.
DI 15 15
— le .
[¢]
l .
Fig. 4

- 4oo -




ol

«01

O

ol

el

«01

o

ol

al

201

20

20

LM

le

0.0

o1

Fig. 4

- hor -



P |

Q

o g

-

o

le

ol

ol

01

o

O

01

Fig, L4

- 4o2 -




[l ol ol N el

(o} ol &)

o

© O

Fig. b

CA gL TS

- 403 -



PAGE 26

AUTUMATIT SYNTHESTS PRUGRAM

MATRIX S

NUMBER OF ROWS 3

- NUMBER OF COLUMNS 4

U, 5UUU0S62E 0T

0. 60000406 U1 U 1999970 0E 01

U 19999504 U1

UeD302%456562E=05

U, 99998961t 00 =U. 15427543 7TE-0%

=U.Z2%4{03038E-0%

e IYIFIIBIOE T

=U. 199950583t UI U, IUUUBULOUEUT

U, 1UGUIUrZE U7

MATRIX S

T NUMBER OF RUWS 3

NUMBER OF COLUMNS %

0.29998252E 01

-0.30000342€E 02 -0.69998919E 01

-0.49996567E 01

0.19999714E 01

-0.29999191E 01 0.20003461€ 01

0.79999965E 01

0.79998185€ 01 -0.30008943€ 01

-0.3600N0139E 02

-0.39996356E Cl

--Fig. 5

CAR 4 7
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PAGE 29 AUTOMATIC SYNTHESTS PRUGRAHM

TTMATRIX S
NUMBER OF ROWS 3 NUMBER OF COLUMNS 4
=0 2354 78T6E 0% 0. 36666603E 05 0. 4%84%01163E 0% 0.69591645E 03
——=0714%896059€E 05 . =0 =0~
0-29066005E 0% =021 84S TT4E0F O T137T3038YE 03 094482 138E 0%
MATRIX S
T NUMBER-OF ROWS—3 NUMBER OF COLUMNS %
e [ 1 —
0.885658751€ 04 -0.14704803E 06 -0.18653721€E 05 ~-0.19579727E 04
0.75938398E 05 -0.21837629E 04 0.15728378E 05 0.2300G103€ 06

-0.14969205E 06 0.65527389E 04 —0.22299267E 04 ~-0.47094142E 06




CHAPTER XVI

APPRCXIMATTION OF AN IMPULSE RESPONSE

1. Description of the Problem: Given a sampled signal (i.e. a sequence of

scalars), we wish to approximate it in the least squares sense by the impulse
response of some other system (preferably perhaps smaller), whose dynamics
are specified. The approximation procedure is to be applied to signals on
any finite interval; as the interval increases, we want our approximation to
change accordingly., We will treat this problem in close analogy with the

general statistical filtering problem.

2. Theory and References: See, in addition to Chapter VITI

[1] R. E. Kalman, "A New Approach to Linear Filtering and Predic-

tion Problems", Journal of Basic Engineering, March, 1960.

Given the signal {zk}, k =AO, 1, «s., a vector h, and a matrix
F, we wish to determine a vector GN such that
N ~ AA 2
z (zk - He GN) is minimum for each
k=0 N=0, 1, eu. .

This problem has a well-defined solution, which is readily derived
by least-squares fitting techniques (see Section 5). We will approach the
pbroblem from a slightly different point of view and obtain a solution by
using an optimal filter., This will not give us the true minimum because
we cannot put in the correct initial covariance matrix, but from the prac-

tical point of view the results will be very satisfactory.

3. Specific Problem: We are given a sequence of scalars {zk} k=0, 1, ...

where Zy is the response at t = 0,5k of a dynamical system having impulse

response

- CAZ 75T
[[ (s+3)
3=1
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‘We will approximate this as the output of a system with

A

(3.1) F = diag (-.8, -1.5, -3.), H= [1, 1, 1]

by determining the optimal estimate ;’EN of x(.05N) with the aid of dis-
crete filtering. Then we relate this back to

= 0 via the transition matrix to obtain an estimate of %(0). We may
regard x(0) as equivalent to the matrix G for the system (3.1l). Thus
we will estimate the given 1mpulse of a known finite-dimensional linear
dynamical system, in which F and H are fixed (the latter without loss

in generality) and G is to be determined, optimally.

4, Preliminary Computations:

| 0 0 1
F = ‘ , G = 3 H = [l l]}
Lo -1 ) -1

We generated a tape of the impulse response of (4.1) using the program in
Fig. 1.

This specified the given signal. Then using H=1, F = .5
(R = 1), we ran the filtering program Fig. 2, to obtain %(0|t). The initial

variance vas P_ = 100, initial estimate X =%(0| - 1) = 0. It follows that

p__ =gt "n
N+1 PN + 1
I<1\I — ".05
= T
PN 1
Xy = © Xyt Ky(oy
05N~ O5N
Gyoy = Xy )e
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The exact values of éN are given by

G =0
al = 0k727
82 = 09311
83 = 13746

compared with the machine results

Q>

=0

o)

0.b7273731
093116675
. 13746906,

Q> a> Q>
o
]

W

The small loss in accuracy is apparently caused by the fact that Pl is

only accurate to six decimal places.

A second check was made using

u n
0 1 0
F = 0 0 1,
- 06 -8.1 - 05
L2 >+
0
G=1{0 |, H=[1 o 01,
1
_—

to specify the impulse response
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1
G .8)(s + 1.5)(s * 3)°

This was approximated with

-.8 0 O—
F= 0 -1.5 of|, H®H=I[1, 1, 1l
L 0 0 -3

The two systems have the same eigenvales. G can be calculated to be

. 64935065

Q>
i

-.95238095

| « 20303030

Using P_ = 1000L (R = 1), the approximation was run and converged to

e ——

64159

[P
It

-.93345

« 29022

by t = 7.l

5. Procedure and Results for Specific Problem: We computed the impulse

response at intervals of .05 for the transfer function (3.1) by applying

the transformation

L L Lo b

T = aiag (104, 10%, 10%, 10%, 10%, 10°, 100, 10)
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to the system

H=[10%, 0, 0, 0, 0, 0, 0, 0]
¢' = [0, 0, 0, 0, 0, O, 0, 10°]
F =

companion [-40,320., -10958Lk., -118,124,, -67,284,,
-22,4h9., -4536., -546., -%6.].

The corresponding signal is plotted in Fig. 3. It is obtained using
the program in Fig. 4, which is essentially the same as in Fig. 1, except
that the response is printed.

Then we approximated the signal with the system

-08 O O
F = 0 -1.5 o | H=[1, 1, 1],
l_ 0 O "'3.

using the program in Fig. 5, which gives us X(t|t - 1), G, and the cumu-

lative square errors. This was done by obtaining a sequence

~

2(.05N1.05(N-1)) = §N. which would be translated back to the origin as @

~ N
oy using the transition matrix @(O,.O5N). The three components of ¢

are plotted in Figs. 6 and 7. N

A 2 o
It is of interest to have kfb(z(.05k) - 2(.05k[.05k))%. This is

is tabulated in Fig. 8, along with

N
% (z(0.5k) - 2(0.5k|.05(k'1)))2.

It is really amazing how much better estimate is obtained by inecluding an
extra reading. The period of small increase around 4.5-5,0 seems to corres-

pond to the region where the optimally approximating curve crosses the signal
curve, see Fig, 9,
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) There only remains the task of displaying the approximating impulse
response computed in this manner and the square error given by it. For this
we can choose any value of 8. In Fig. 9 we have graphed the impulse res-
ponse corresponding to 8(7.), a point where 8 has attained steady state.
The error is tabulated in Fig. 10. These results were obtained using the

program in Fig. 12.

The response and error were also obtained for 8(2.0), which 1is
approximately two-thirds the final value of 8. The impulse reponse is
graphed in Fig. 11, the error tabulated in Fig. 10. These results were
obtained using the program in Fig. 12.

As an experiment, we let the initial variance matrix VO be 10171.
This gave a run which differed drastically from the previous run with

VO = 10°I. The terminal valte of G (compare with Fig., 6 and 7) was

1 101.95869
&(7) = | 23547173

196.8L4500
Immediately we see that the curve generated by this 8(7) will have an
enormous sum square error. The initial error (63.311958)2 above is larger
than the total error for the previous estimates (see Fig. 10); however the
error given by E(t|t) is extremely small (see Fig. 13 and compare with
Fig. 8). The response curve appears in Fig. l4; it has very good fit at
the peak and rather poor fit at the ends.

In an attempt to improve the fit in the vicinity of the peak for the
problem with VO = 1051, we let R =0 on the interval [1, 3], wusing the
program in Fig. 15. This gave behavior very much like thet with the large
V0. The terminal value of 8 was

117.91459 )
G‘(lO) = _299.13265 .

15,4872
i 315 7'7J
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The errors are given in Fig. 16 and the curve plotted in Fig. 17.

This procedure was extremely successful in giving us good results,
very good results, at the peak, but associated with this is & much poorer
performance at each end. These results are quite reasonable considering

that we have penalized errors on [1, 3] so heavily.

6. Ieast Square Procedure: We will now analyze the same problem from a

strictly least square approach.

Define

~ N ltr\ AA
W= 5 o H'HO .
N

i=0

Then the problem stated in Sec. 2 has the solution

N
A _ ﬁ l'/\
Gy =Wy Z0
i=0
Observing that
~ _ /\'A A'A ~
(6.1) Wiy = H'H + 0'W
or
~ A ~ + tA AN +
(6.2) Wiy =Wy + 00 T HHO L,

we will try to obtain a recursive definition of GN'

A~ A# N+l ll/\
—_ t
Gy = Wi 'fo ¢ Hzy
_ A# A A + ~ AN+1'A' .
= W "l w§+l<1> HiZyiy
because WNWN is the identity operator on the range of
S A A A
[H', ®'H!, 02'H', ..., &~ H']
~ An ~ N+l'A'A/\N+l ~ AN+l|
Gy = Wypg (W = @ 7 H'HO )G + Wf\mq’ ntl
from.GS.E). Now W§+l’ AWN+l is tEe identity operator on range

WN+1 D range WN. But GN € range W., so we obtain the recursion formula

N
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>
>

~ l/\ AA A
& L6 .ot Gl _ ol
w = O T Wa®  H'(zp, - HO Tay)

which holds at every step.

Uhfortunately we will find no such formula for WE+1
-exists for Wﬁi but it requires that ¢ -1 and WN exist. This will mean. of

gogrse that before starting the recursion formula we must obtain n readings, find
W, and then proceed.

N
ALl ~elen-l -13 -1tn T E R “lpnelaeloaslt
W= @ [WN - WN (H@ le o H' +I) Ho lw e

A recursion formula

The following example shows that the recursion formula need not hold,

ca o=l .
even if wN-l exists.

Consider
=
1 1
H=[1 o0l o = .
0 1
_— A
H
This system is completely observable since det | .. f 0.
HO
1 0 1 0 1 -1 1 0
~ ~4 A=l A--l'__.
Wo = ) Wo = ’ ¢ = y 0 = .
0 0 0 0 0 1 -1 1
-— — . b
2 1 1 -1
~ A-l
Wl = ’ 1 = .
E. 1 -1 2
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But using the recursion formula, we obtain

p— ey

1/2 0

s

0 O_J

Not only is W
~ 2

sequent Wg will be singular (because [5-1, ﬁ] is not completely controllable).

incorrect, but it is singular, and in fact all the sub-

Using this procedure and the programs appearing in Figs. 18 and 19 we com-
puted

G(2.) = [63.124303, -118.11554, 58.159163]

and

[79.965998, -153.5862k, 78.5735821.

G(7.)

These gave the response appearing in Fig. 20 and the errors tabulated in
Fig. 21. Notice that the filter gave results quite comparable to the true

minimum,

In Fig. 18 we have used 9 steps before inverting the observability matrix

”~

WN with inversion errors of about 10 '. This was required because inverting at
three steps gave inversion errors of 107t
As a test we put the same system in companion fomm with ﬁ = [1 0 0]

and were able to invert at three steps with errors less than 10-4. Using F
in companion form with E = [l, 1, 1] we obtained inversion errors of 10-2. The
cunulative error was not significantly affected by these small errors. This is ‘
an interesting point which can perhaps be resolved as follows: If knowledge of
the system had been perfect i.e. if we had used the ﬁ = F, tThen our use of

lOl7I as an initial covariance would probably ngt have affected the limit value

N
of G. However by using an incorrect value of F we were insensitive to small
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errors in the sense that their contribution would be small to a total which,

because of the mismatched dynamics, must be large.

On the other hand, because of the mismatched dynamics, information
about the whole curve must be available., Theoretically if the dynamics are

matched we need only any three points on the curve.

T. Digression: To the person interested in using digital computers to apply
optimal system theory, one of the most frustrating and lingering problems is

that of matrix inversion.

In discrete problems, many engineers have felt that the matrix Pk 1
should be computed stepwise by using one column of I' (row of H) at a
time, in order to guarantee that ﬁP'PFi-R]# can be accurately calculated.
This procedure can be used if R 1is diagonal; we can prove this by remember-
ing that T and ® need not be constant matrices. In the filtering problem
this corresponds to treating the output vector one component at a time with
no dynamics between, a procedure which is clearly feasible if the noise in

the diff rrelated, i.e. if R 1is diagonal.

»
a
q
I
E
<
o
o
E
:
e
o+
[ ]
'.J
[ 6]
3
¢
O

If an inversion ioutine is used routinely then problems can arise (e.g.
[P'Pr + R] is always nonnegative definite but an inversion routine may very
well treat "noise" of t»: wrong sign as legitimate numbers, rendering the re-
sult [P'Pr + R]_:L indefinite). This particular problem can be avoided by
using a pseudo-inversion routine for nonnegative definite symmetric matrices
which will guarantee symmetry and nonnegativity of the output. More serious

is the question of the subtraction occurring in
P - PM'(MPM' + N)ﬂMP.

It Pk -0 as k —o, it will be difficult computationally to pre=-

serve nonnegativity even with the use of PBEW. Using a stepwise process

it may well happen that

PM'MP

(T.1) - Ty

(M = row vector)

- 415 -



will be numerically nonnegative. In particular if N ;4 0, it seems that (7.1)
should always be 2 O,

It turns out that this process also uses less machine time and there-
fore appears from every viewpoint to be the desirable means of computation
if N is diagonal,

In what follows we give a strictly algebraic proof that the two methods

of computation are equivalent.

Iet
S =P - PM'(MPM' + N)#MP
where
H
M = and N = diag (R, r).
h
Let
8, =P - PH!'(H'H' + R)ﬂHP
= - t t #
8, =8; - S;h (hSlh + r) hs, .

We want to show that S = 82. This reduces to proving that
PMY(MPM!' + N)ﬁMP = PH'(HPH! + R)ﬂH'P
+ P[h'-H'(H'H' + R) H'Hh'][h(P-PH!(H'H® +R)ﬂH‘)h'+r]ﬁ(h—hPH'(HPH'+R)ﬂH)P.

The psuedo-inverse of a matrix i1s, unfortunately, not a continuous func-

tion of the elements of the matirx, hence we will need to consider several cases

1) If r=0 and hPh' =0, then hP = 0 and we prove quickly that

_ #
HPH! + R Hph' HPH' + R O

I
1l

MMt + N]ji
hPH? hPH! + 0 0

] (HPH® + R)ﬂ 0
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2) In the most important case, when hS
prove that (MPM* + R) = ©, where

(HPH'+R)n[I+HPh'(hSlh'+r)'thH'(HPH'+R)ﬁ

symmetric

L

We do this by recourse to the pseudo-~inverse axioms:

p—

HPH' + R HPh'!

MPM!' + R =

L hPH' hPh! +

}mm'+Rxmm'+Rﬁ

(]

] -GEHHRﬁHHﬂaﬁfv+m‘l

Jht+r £,

h(hslh'+r)‘l

This is symmetric, which proves that axiom I holds.

In order to obtain this form it is necessary to know that

©.2) (HPH' + R)(HPH' + r)¥

This follows from Lenna (2.14), Chapter IV.
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It is clear now that O(MPM' + N)® = ®, which proves that axiom 2
holds. Using (2.1) we see that (MPM' + R)&(MPM' + N) = (MPM' + N), which

proves that axiom 1 hqlds.

There remains to show that &(MPM' + N) is symmetric

(HPH' + R)“(H*H' + R) 0

&(MPM* + N) =

3) The final case is considerably less important. We have

hSlh' +r =0 and hPh' # 0. Unfortunately it is no longer true that

(HPH' + R)ﬁ o-
(MPM' + N) =

so we will have to prove that
Mt (MPM! + N)#MP = PH'(HPH' + R)#HP.

There seems to be no royal way of doing this, so we will compute (MPM' + N)

1
HPH' + R (HPH' + R)”QHPH'

wpH! + R)¥PHpn npg
f1-
T+ ~

— i®
- 1 + HPH'(HPH! + R) 2Py

#
] (HPH' + R)

hpPH!

This follows from the fact that
(HPH' + R)(HPH' + R)*~ = (HPH' +R) .

(An interesting result obtained in this investigation is that Sﬂg = Sgﬂ and
sts = gst for any symmetric S). We wish to compute
f
HPH' + R HPh'

hPH! hPh
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and before we can do so, we must determine if

HPh' HPH' + R | HPH' +R | | HPh'

- hPH! hPH' hPH!

| HPH' + R

(HPH+R) i 2 HPh 'hPH!

(1 (HPH'+131ﬂ2}£PH'hPH'
- b

l 1L+~

] (HPH'+R) HPh' +

hPH'!

(HPH'-I-R)ﬁILPh'hPH'(HPH'+R)ﬂH“_Ph‘ - @PH'+R)ﬁHPh'hPh'
1 + hPH'(HPH' + R)”ZHPh'

’ HPhl

h.PH'(I-LPH'+Rlﬂ2HPh'§hPHiHPH’+R)ﬁHPh’ - hPh'

1 = BPH'(IPH'+R)¥HPR!

hPH'(HPH'+R)ﬁH:Ph' -

h' = h(P - PH'(HPH' + R)ﬁHP)h‘ = 0 we obtain

If we now remember that hS:L

HPh'® HPh'

| hPH'(HPH' + R)ﬂ}EPh' hPh'

bk—. -l b —
. This shows why the condition hSlh‘ + r =0 is a natural one though it

does not appear to be at first; it is important to the choice of which formula

can be used in the iterative definition of the pseudo-inverse.
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b or # -
HPH' + R HPh' HPH'+R HPh! | HPH'4R
= I - | [hPH' hPh']
hPH' hPh' hPH* hPh! o hPH'
ﬂl
|HPH® + R | HPH' + R
[hPH' hPh']
@ hPH' hPH'
where '
HPH' + R HPH' + R| | HPh!'
o =1+ [hPH' hPh'] ‘
hPH! hPH! | hPh'
but
- # -
’ HPH' + R| | HPh! . "
, = (HPH' + R)ﬂHPh, _ (HPH'+R)"“HPh' [hPH' (HPH'+R) "HPh'-hPH' ]
L hPH* 1+~
= (HPH' + R)ﬂHPh’.
So O =1+ ~, and
- # |
HPH' + R :
(wn' + R)"Epnwen (eean) | EPHY + R
" hPH' L+~ WP
(MPM' + N)* =
HPH'+R
hPH'(HPH' + R)

1+~ hPH!
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# HPH'4R
HPh'-Ph' JhPH® (HPH'4R)
1+ ~

_ [pH'(HPH'4R)

P[H' nt*](MPM'+R) = | PH'
h'PH

#
HPH' + R_\ H #o #
_ (#pH'+R)" “HPh' [nPH' (HPH'+R)" HP-hP]

P=(HZPH'+R)ﬁHP -
hPH! h
Now consider h[P - PH'(HPH' + R)ﬁHP] = ho.
We know that hoh' = 0 but since 6 is nonnegative definite, it must

be that hg = O.
Therefore

H

P[H' h'](MPM + N)it P = PH'(HPH' + R
h

yhp,

7. Adaptation by Error Minimization: This technique may be used to determine
- ~

the parameters F by trial and error to minimize the least-squares fitting.

As seen in Fig. 21 we had an error of 221.% vhen using A(F) = - .8, -L.5, -3.

The [ollowing table shows the cvolution of the system as this error is de-

creased.,

1 2 3

.8 1.5 3. 221.4
.7 1.h 2.9 148.9
.6 1.3 2.8 7.2
N 1.2 2.7 121.2
.7 1.2 2.5 115.5
ol 1.25 2.4 109.5
.73 1.25 2.3 103. 4
.75 1.25 2.1 95.9
7 1.27 1.9 90.0
.88 1.27 1.9 78.7

- 421 -



If we allow F to have one more eigenvalue, we obtain the following results:

- - M - M3 -

.6 1. 2. 2.9 176.2

.8 1.1 1.9 2.9 102. 3
1. 1,2 2. 3. b1k
1.1 1.k 2. 3. 13,2
1.2 1.4 2. 3. 8.45
1.3 1.4 2. 3. 7.78
1.28 1.k 2. 3. 7.63
1.28 1.h 2. 2.82 7.10

Like other adaptive schemes, this parameter search procedure is
not as easy as the table above makes it appear. Nevertheless the search pro-
cedure can be mechanized to obtain an optimal fit over some chosen interval
of the impulse response, This sequence of systems can then be patched to-

gether to provide an approximating time varying linear system.

The impulse responses of the "optimized" approximating systems
appear in Fig. 22 and 23,

The following is a very rough estimate of the arithmetic operation
required to compute Pk+l' First by treating m outputs and then by treat-
ing 1 output m times. Floating addition, multiplication and division

are considered equally time consuming.

The inner product of two n <vectors is assumed to required 2n
operations, actually n multiplication and n-1 addition. Matrix inversion

3

is assumed to require n operations.
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Stage (i) Inversion  (ii) Single output

»

MP 2mn2 2n2
MPM!? 2mn2 + 2m2n 2n2 + 2n
MPM' + N 2mn2 + 2m2n + m 2n2 + 2n+l
(MPM* + N)_l om® + 2m2n + m+m3 on° + 2n + 2
(MPM* + N)-INLP oun® + hmPn + — on° + I+ 2
PM'(MPM® + N)"1MP hun® + bmon + mino 3n2 + 3n + 2
P - PM'(MPM' + N)"]‘MP hmn2 + llmzn + mm5+n2 un® + 3n + 2

Now multiply the operations in the single stage process by m and sub-

tract, the difference is

)-l-mzn-jmn-m+m3+n2>0.
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BEGIN

LOAD He Fs Gs TeNDeZlse 1o
REW 5
— WFF L}
ETPHI Fo TePH
__MULT Is G le
REW ' 5
HEAD 1ML T He 14 Y
SAVE S Y. YeZlse Toe
ADD Zls To 21
MULT PHs 1o 1
IE. ND.Z1+MEAD )
END
_H 1 1
le le
F 1 1
[0} (o} -1
G 1
le =~le
T 1 1
ol
ND 1 1
3.
Z1 b 1
o
I 2 2
1e 0 le
Fig. 1




BEGIN

REW S
LOAD Z1+ DePCeT1sLFeVOsLHes Rs Qs 1 eXCeND+
EQUAT 1+ 3o
ETPHI LF«T1+PH
SUBT Z1+T1» MT e
ETPHI LFsMTiHP
HEAD 1BRING S Ye Yo
SAMPL PHsVOesLHs Re Qs DsPCo VOs KeALs
MULT LHeXCo yYC
SUBT YeYCo YT
MULT KeYTs le
MULT PHeXCoe 2
ADD 1o 20 XC e
MULT HPe 3¢ 3
MULT 3e¢XCo GCs
RINT Z1. GC+GC
ADD Z1eTlo Z1
IF NDeZ1+HEAD 1
END
Z1 1
[¢)
D 2
0 ol
PC 4
(o} 0 (o] le
T1 1
o1
LF 1
-5
vo 1
100
LH 1
1e
R 1
1e
Q 1
[¢]
I B 1
1e
xC 1
]
ND 1
2e
Fig. 2
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BEGIN

o IT
REW S
WEF =}
ETPHI Fo TePH
MULT 1e G ) Y
TRNSI Jes Ko Re GePHIGMs HTT
REW s
HEAD 1MULT He 1o Y
SAVE S Ye YeZls To —
ADD Zle To Z1
MULT PHs 1 1e
IF ND+Z1 +HEAD 1
END
H 1 8
le 0 [o] 0 [s)
0 o] [o]
F 8 8
0] le o) (o} o}
[¢] (o] (o] o] 0
le ¢] 0 (s} o
0] Q Q [s] ) B
0 0 o] e} (o]
[0) 0 o] ls Q
[¢) o] o] 0 (o]
o o] 100 0 0
0 o] 0 [¢] o]
o 10 o] o] Q
0] o] 0 [¢] ¢]
10 ~40632 —109.584 -1184124 -67.284
-22¢449 -45436 ~5446 -36e
G 8 1
0] o] 0 0 0
[¢) 0] 1000.
T 1 1
o « 05
ND 1 1
10
Zi i 1
0]
18 8 8
le 6] o] Q 0
0] e} 0 ] le
0 0 [¢] Q o]
0 o} 0 le o]
0] 0 [o] o] o]
0 o] . o] 0
0 o] 0 o) 0
0] le 0 0 o]
0 0o o Q Q
1le o] o] [e] 0
Q 0 [¢] Q le
[0} o] ] o] 0
[¢) o [o] le
J 1 1
0
K 1 8
[0} 0 0 (0] Q
[¢] o} o]
R 1 1
0]
GM 8 1
Fig. 4
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JANe 22+ 1965

BEGIN
REW S
LOAD Z1s DePCaTlelFeVOslHe Re Qo JaXCalNDa
EQUAT 1+ 3¢Z21e220
ETPHI LF«T1.PH
SUBT Z1.T1o» MT o
ETPHI LEJMToHO,
HEAD 1BRING S Ye Yo
SAMPL PHeVOal tHe Roe Qo DoRCs MO K oAl s
MULT LHeXCs YC i
SUBT YaeYCo YT
MULT KeYToe le
MUL T PHeXCo 2 -
ADD 1e 20 XC s
MULT HPs 3. 3
MULT 34XCo GCo
MULLT HP XC 7
MULT LH 7 yC
sSUBT Y YC YT ;
MULLT YTaYTe Y2 :
ADD Z2.Y20 22
TRANP GC. GTo
TRANP XCs XT o
JUXTC GTeXTo 44
JUXTC 4,22 Se
RINT 21, S5¢ X
ADD Z1sT1o Z1
1IF ND«Z1+HEAD 1
END
z1 1 1
0]
(o] 1 2
¢} « 05
PC 1 4
[¢) 0 [o] le
T1 1 1
¢« 05
LF 3 3
~8 0 o o ‘ ~1e5
o} Q o] -3
vO 3 3
1000. 0 0 (o] 1000.
0] 0 Q 1000,
L.H 1 3
le le le
R 1 1
le
Q 3 3
o o] 0 0 o)
o o] o] o]
1 3 3
le o] o] (o} le
o 0 (o] le ;
XC 3 1
) o o}
ND 1 1 3
10 !
Fig. 5
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05N = T g (2(.05k) - £(.05k|(x-1)))° g (2(.05k) - £(.05k].05x))?
k=0 k=0

5 .02 .01
1.0 5.37 3,42
1.5 48.59 %6.93
2.0 134.88 112,23
2.5 212.03 184,01
3.0 253.13 223.59
35 267.85 238.03
4.0 271. % 241,47
k.5 271.72 241.86
5.0 271.7Th 2k1.89
5.5 271.89 2k2.03
6.0 272.10 2hp, 25
6.5 272.29 2L Ly
7.0 272,43 2h2,58
7.5 272,52 242,66

Fig. 8
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OPTIMAL APPROXIMATION

Fig. 9

- 433 -




N

.O5N = T 2 (a(.000) - 2(.05x[7.))? B (2(-05) - 2(.05k|2))°

5 68.59 26.43
1.0 93.42 418,18
1.5 146.19 60.57
2.0 150.75 103.18
2.5 175.06 208.78
3.0 203.22 297.h7
3.5 217.07 342,65
L,0 220,94 359.62
4.5 221.46 364 .64
5.0 221.49 365.80
5.5 221.62 365.97
6.0 221.83 265.98
6.5 222,02 365.99
7.0 222,17 366.00
7.5 222,26 366,02

Fig. 10
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OPTIMAL APPROXIMATION

10

Fig. 11
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BEGIN

REW S
LOAD Z1+« ToeNDs Fo¢ HeXCo
ETPHI Foe TsPHos
EQUAT Z1+22»
HEAD 1BRING S5 Ya Yo
MULT HeXCo YCo
SUBT Ye¥YCa YT
MULT  YTeYTe Y2
AQD 22eY2 e 22
JUXTC YC Z2 23
RINT . Z1 Z3 ERR
MULT PH XC xC
ADD Zle To Z1la
IF ND+Z1+HEAD 1
END
21 1 1
6]
T 1 1
«05
ND 1 1
TS
F 3 3
~e8 (6] Q ~1e85
0 o [o] =3
H 1 3
le le le
xC 3 1
6121139 -113.73065 554368904
Fig. 12
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LY "“2
.05N = T % 22(tt) =z (t]7)

.5 .2.1077 9365.
1.0 .18 9368.
1.5 1.20 9371.
2.0 5.45 9372,
2.5 9.10 9375.
3.0 9.86 937T.
3.5 10.1 93771.
4.0 11.5 9378.
k.5 13.9 9380.
5.0 16.3 9382.
5.5 18.2 938k,
6.0 19.5 9385.
6.5 20.3 9386.
7.0 20.8 9387.
7.5 21.1 9387.

vo=10"7 R=1

Fig. 13
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OPTIMAL APPROXIMATION

y(o) = 63.3
Vo = 1077

Fig. 1k
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BEGIN

REW S
LOAD Z1s DsPCoeT1+LFeVOsLHs Rs Qs TsXCoeNDIN2+N3sR14R2
EQUAT Is 3321422714234
ETPHI LF+T1sPH
SUBT 21Tl MT.a
ETPHI LFeMToHP,
HEAD 1BRING 5 Ye Y
SAMPL PHsVOsLHs Ry Qs DsPCy VOs KeAlLy
MULT LH«XCos YC
SUBT YeYCo YTe
MULT  YTsYTo Y2
ADD Z3 Y2 Z3
MULT KaYToe 1o
MULT PH«XCo 2
ADD 1ls 20 XCo
MULT HPe+ 3o 3
MULT 3¢XCos GCo
MULT HP XC 7
MULT LH 7 yC
SUBT Y YC YT
MULT YTeYTas Y2
ADD  Z24¥2s Z2,
TRANP GC GTo
TRANP XCq XTo
JUXTC GTeXToe 4
JUXTC 4422 S
JUXTC S Z3» 6
RINT Z1. e X
ADD Z14T1l, Z1
IF ND+Z1 +HEAD 1
1F ND+N2+HEAD 2
EQUAT N2+NDsR1e+ Ry
IF Z1+Z1+HEAD 1
HEAD P2IF ND«N3«HEAD 3
EQUAT N3+ND R2s R
1IF Z142Z1+HEAD 1
HEAD 3END
Z1 1 1
o]
D 1 2
0] 0 05
PC 1 4
Q 0 0 1e
T1 1 1
«05
LF 3 3
-8 [¢] 0 o] =15
0] 0] (¢} -3
Vo 3 3
1000, 0 0 [o] 1000«
o] 0 0 1000
LH 1 3
Fig. 15
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le

le

R 1
1.
Q 3
O (0] 0]
[o] 0 0
1 3
le (o] 0 0] 1e
[¢] (o] 0] le
xC 3
0] 0 [¢]
ND 1
le
N2 1
3
N3
) 10
R1
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.05N = T s 22 (t]t) £ 22 (¢]10)

.5 .011 LrhsT.
1.0 3.42 L7501.
1.5 3.h2 47503,
2.0 3.2 k7503,
2.5 3.48 L7503,
3.0 L7 L750k.
3.5 9.26 k7509.
4.0 16.4 47516.
4.5 23.8 b2k,
5.0 29.8 47530,
5.5 34.0 k753
6.0 36.6 k7536,
6.5 8.1 47538,
7.0 3.9 k753,
7.5 .3 L75%.

VO = 1000 R=0 on [1, 3]
Fig. 16

- 441 -



<>

12

OPTIMAL APPROXIMATION

10

y(0) =134.3

R=0 on [1,3]

Fig. 17
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BEGIN

LOAD Te FeZls He PaP2:sX09114Z3s DsPCoNDs
REW 5 ’
PIZER Z1+sP2y
ETPHI Fe ToePHo
MULT HePHe G
MULT G+PH 2
MULT 2 PH 10
MULT 10 PH 20
MULT 20 PH 30
MULT 30 PH 35
MULT 35 PH 40
MULT 40 PH 45
JUXTR H G 3
JUXTR 3 2 4
JUXTR 4 10 11
JUXTR 11 20 21
JUXTR 21 30 31
JUOXTR 31 35 36
JUXTR 36 40 41
JUXTR 41 45 46
TRANP 46 =1
MULT 5 46 [<)
PSEUO 64+ P RK PRINT
TNVRS 6 =]
MULT 6 P PP
MULT & 9 PQ
BRING 5 YeYOs YsYle YaY29 Ys¥Y3s YsYss YeY5e YaVY6s YsY7s YaY8
JUXTR YOsY1la 7
JUXTR 7 Y2 8
JUXTR 8 Y3 12
JUXTR 12 Y4 22
JUXTR 22 Y5 32
JUXTR 32 Y6 37
JUXTR 37 Y7 42
JUXTR 42 Y8 47
MULT 5 47 8
MULT P 8 X0
RINT PP TP PQ IT XU XOs & W
BLOT 2
TRANP PHy PT
TRANP H HT
MULT  PT HT TR
MULT PT TR TR
MULT PT TR TR
MULT PT TR TR
MULT PT TR TR
MULT PT TR TR
MULT PT TR TR
MULT PT TR TR
sSUBT Z1 T MT
ETPHI F MT HP
MULT H HP G
Fig. 18
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ADD z1 T Z1
ADD zZl T Z1
ADD Z1 T Z1
ADD Z1Y T zZ1
ADD zZ1 T Z1
ADD z1 T z1
ADD 21 T 21
ADD zZl T zZ1
HEAD 1BRING 5 Y Y
SAMPL HP P G 11 Z3s D4PC, Py KeAL
MULT PT TR TR
MULT P TR K
TRANP TR TT
MULT TT XO yC
SUBT Y YC ER
MULT K ER XE
ADD X0 XE x0
TRANP XO XT
ADD zZ1 T Z1
RINT Z1 XT XO
IF ND Z1 HEAD 1
END
T 1
«05
F 3
—e8 ~145
0 0 0 -3,
Z1 1
0
H 3
1e le le
3
0
0
P2 1
1.
X0 1
0 .
I'1 1
1e
Z3 3
0
0]
D 2
0 .05
PC 4
0 T
ND 1
T
_Fig, 18
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BEGIN

LOAD Z1lse TeNDe Fu
REW 5]
ETPHI FY T PH
EQUAT Z1+Z2+
HEAD 1BRING S Y Y
MULT H XC YC
sSUBT Y YC YT
MULT YT YT Ya
ADD 22 vz z2
JUXTC YC Z2 23
JUXTC Z3 Y 74
RINT Z1 Z4 ERR
MULT PH XC xXC
ADD Z1 T Z1
IF ND Z1 HEAD 1
END
71 1 1
0
T 1 1
05
ND 1 1
T
F 3 3
-3 —1e5
_.3.
H 1 3
1e 1e 1le
XC 2 1
7963965997 -152e58624 784573582
Fig. 19
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CHAPTER XVII

MULTI-RATE SAMPLING

l. Description of the Problem: Frequently information about the state of

a dynamical system is available only at a discrete set of points in time.
This fact has given rise to the study of discretized systems. To complicate
matters, however, there are times when sample and hold elements in a system

operate at two or more different frequencies.

In this chapter we will examine how we may produce an optimal control
for a system having an internal sampling period distinct from the period at
which control can be changed.

Parenthetically, we will examine the relation of the continuous
performance index to sampled ones, with and without the additional (internal)

sampler,

2. Theory and references: In addition to Chapter VIII, see R. E. Kalman

and J. E. Bertram, "A Unified Approach to the Theory of Sampling Systems",
Jour., Franklin Institute, vol. 267, May 1959.

5. The Specific Problem: We take the flow diagram of Fig. 1, where

- 10(s - 1)
Sy = 2
s(s” + 2s + 8)
\
-0
5 = 3

_ 1
37 (s + 3)(s + k)’

and synthesize it by the flow diagram of Fig. 2, having
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o 0O 0 0 0 0 o©
1 0o 8 0 0 0 0
o 1 =2 0o 0 o0 0

F =
o o o0 0 -2 0 1
o o o 1 -7 0 0
o o 1 0o 1 0 0
o o 0 0 0 1 O

10—1
-10
e=| 9
0
0
0
0

We wish to optimize this continuous system with respect to the per-

formance index

o]

x(0)Bx(0) = [ Uy + 2§)2

+ .Olu?]dt,

having

O
]

diag (O) 0, 0, 0, O, )
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Having done this we will introduce a sampler on the control with

Period T and examine the performance index matrix P%,

x'(0)p x(0) = ; xt(ir)TQx(it) + u'((i-1)7 )TRu((i-1)1)

i=1
as T goes from S = .73575888, to zero. By the reasoning given in Chapter XI
we realize that in the continuous control problem we may replace Q by

1 0
Q = diag (0, 0, 0, O, O, 4 ); we will see if this can be dore in

0 Ok '

the discrete case as well.

We will then, using our multi-rate program introduce a new state vari-
able Xg to describe a sample and hold element operating at a period of 2
between x7 and X), . Because the two sampling periods are incommensurable,
the transition matrix between control points is neither convergent nor periodic,
so the optimal gains do not converge. We will take a total interval of 25

over which to optimize,

The open loop transfer function is

x.(s) . L
E%ET’ - S 100( 1)(s+£)(s+ %

s(s® +2s + 8)(s" + 757 + 1252 - 10)

having poles at 0, -1 + ~J;7, ~ .75, ~ =4.75.

We will assume that both sample and hold elements operate at t = 0.

b, Results: Using the brogram appearing in Fig. 5, we ran the free motion

and x and instabi-

which gave, as expected, stable behavior in xl, Xos 3

lity in the other components,

We then computed the optimal control for the continuous system, using
the program in Fig. 4. This converged in 9.47 seconds to & performance index

with diagonal elements:
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Pyq = 16.233963
Py, = 16.121959
Psy = 14.866118
Dy, = 4857859
p55 = L4.,407092
P = 1822.1928
P = 12.586129.

Using the program in Fig. 5 we computed sampled control for various
values of T. This generated the following table illustrating how the sampled

performance index converges to the continuous one

T b1y Peg P Time for convergence
< 7257588 39.500149 3872.7168 2k, 452950 12.51
«36789k4 20.613631 224k, 5554 15. 730421 11.40
.18393972 17.365082 1935.2903 14,137003 11,04
.09196986  16.639765 1864.3951 13.795817 10.66
. 04598493 16, b54767 1846,0598 13, 716736 10,19
.02299241L  16.384925 1838.8439 13. 683984 9.78
.011496207  16,340233 1833.9453 1%.655727 9.46

It appears from the experimental results in this case, that the
sampled control is also independent of whether the error is (y + 2&)2 or
2 o2
y+1+y.
Our multi-rate program appears in Fig. 6, three runs were made with

this and checked by using the ordinary sampled program.
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The first, with Tl = T2 = ,73575888 was checked with Fig. 7 and
showed agreement to five decimal places. This simulates operation of the

internal sampler infinitesimally prior to the control sampler.

The diagonal terms of P for this system were,

Py = 23.758
P, = 22.105
Paz = 14,325
Pyy, = 6.5906
p55 = 4.,3283
Pgg = 2103.97
Pog = T.9393
Pgg = 1.9325.

The remarkable point here is the decrease in the performance index

caused merely by providing an extra, constant state variable prior to X), .

Here the diagonal terms of P were nmuch smaller, probably because,

once the loop is broken, the system is asymptotically stable.

Py, = 9.919k
Do = 8.8411
Pgz = 4, 7264
by, = 2.6170
p55 = 1.4585
Pgg = T76.93
Poo = 2.5821
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The secord with T1 = 73575888 and T2 = 50 was checked with
Fig. 8 and showed agreement to four decimal places. This simulates failure
of the internal sampler even to operate. Notice that even though the state
of the system will not go to zero (if xg(0) #0), the performance index is

finite.
The third case is that of our problem, T1 = ,73575888, T2 = 2,

This gave a performance index of

pll = 12,631
pl2 = 11.175
p33 = 5,6149
Py, = 3. 3069
p55 = 1.7685
P66 = 971,03
p77 = 3,0681
Pgg = 2.8250.

In Fig. 9 appear the transients, from unit initial condition on x7,
of the output as given by the free system, the controlled continuous system,

the comtrolled discrete system, and the controlled multi-rate system.

In Fig. 10 appear the optimal control function required for continuous
control and ordinary discrete control of the transients in Fig. 9, with the

given performance index.
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t Ordinary Multi-rate
0 -1.091 ~.219
2
y 1.610 L75
4 -1.110 -.51k
e
6
s «954 L2l
8
e_ - 622 - m’-’-

19 Lok 221
e

= -.237 123

L 146 071
e

%—f— -.085 -. 045

18 .052 .025
e

20
e = 70 558 ~e OK) “a 0150

Surprisingly enough, the gains for the multi-rate did not converge,
to the extent that variations were only about 10% of some average value.
It is possible therefore to compare the steady-state gains for the three
controlled runs,
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Continuous Sampled

56.65
55. 36
46.99
30,26
25,58
555.1
40.95

1.727
146k
1.054
.8225
6168
14,63

1.09%

—457 -

Multi-rate
.9915
. 7168
2558
4106
.1835
6.209
.2186
L4637,



Fig. 1
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BEGIN
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LOAD E T 1_ 21
ETPHI F T PH PRINT
HEAD 1RINT Z1 s 1 X
MULT PH 1 1
ADD Z1 T Z1
IF ND Z1 HEAD 1
END
F 7
0
0 le ~8e
0]
le -2
0
~-12 le
0 1e =T
o] le 1e
Q
0 10
T 1
25
17 w4 2
le
1
o]
1a
le
Q
Q le
[0}
le
h N
Z1 1
Q
ND 1
24 49995
Fig. 3




BEGIN
LOAD TTe DeD1sPCs Fos Ge QeRI«ZRsT1¢X0aNDsR1 P37 4XX

SUBT ZRs Fo 1l
TRANP Fa FTa

TRANP Go GToe

MU T RI«GTs Ca
MULT Gs Co S
NOPM Qs NQa
NORM S NS »
PSEUO NQs PQsRK
MULT PQsNSe M1
DECQM M1, S1SUERWPEs EsRKS
MULT Ss Qo Qs
MULT  S.le Sa Se
MULT SJs Co Cs
BLOT NQs

JUXTC le So 29
JUXTC QeFTa 3.
JUXTR 24+ 3o PH
NORM  PH NP
PSEUO NP4 NP+ RK
MULT NP+ FT T

RINT PH+PH

ErpH—ett T |-:'r1
MULT  TeDis 4,
ADD 449 Do Da

RICAT QePHs Co DsPCoXXs Py KeAlL
RINT PysPER K+ K

WRITE THE PRECEDING MATRICES WERE THE MATRIX P OF THE
WRITE PERFORMANCE INDEX AND THE FEEDBACK GAIN MATRIX K.

MULT Gs Ko GK o
SUBT EaGKa CFa

ETPHI CFsT1 Pl

HEAD 1MUL T KeXOs KXo
JUXTR XO+sRZ« 6
SUXTR BeKXa 2
RINT Rl Te X

MUT PlaXQe X044

ADD R1+T1 Rl

1F NDeR} «tHEAD ]
IF TT«TTWHEAD 2
WRITE RICAT CONVERGENCE TEST REMOVED BECAUSE WITH O = 41
WRITE R]I = 100« CONVERGENCE WAS NOT ACHIEVED.
HEAD 2END
1 1
Be
3 1
« 0001 (0] o)
3 1
Q =le =1000,
4 1
100, 100, le 100Q.
F 7 7

Fig. &4
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JULY 10+ 1965

L, BEGIN
‘ LOAD Te Fs Gs DsPCsR1+Q19RZeZ1 +ND X0
HEAD 2MUL T TRl o R
MULT TeQle Q
EAT Fse TsPHeIN
; MULT IN G GM
— TRANDP P, ET
TRANP GM GT

EQUAT Q =]

SAMPL FTs PsGTs Ry Qs DePCo PE «KT AL

TRANP KT K
suBT PE Q P
RINT P PER K K
LOAD T
lE Toe T4HEAD 2
END
T 1 1
« 09196986
E v d v d
0
o) le -8
Q
le -2
0]
~12e 1
o} le -7
Q 1e 1
0]
Q 10
G 7 1
; 104 =104 0
[0}
D 1 2
« 0001 018393972
PC 1 4
10. 10, le 1000,
R 1 1
e0} i
Q 7 7 |
0 ?
) 0 i
; o]
. Q.
| )
‘\ Q
1 0
L 0
} + 04
i o] 1a
RZ 1 7
9] .
Q
Fig. 5

- L6l -




Z1 1

! ND 1
: 264
i 17 7
; le
le
(0]
; 1e
[0}
Q lae
i o}
; 1a
le
T 1
004598493
T 1
e 022992415
T 1
00114962076
T 1
0057481038

Fig. 5
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BEGIN
o QAD D1 0S2eNDeT1eT2s Qo Ry FeaSeTO0s DsPCiKOs GaX0sRZ P2 EP PI CD

LOAD CE
RE W s
WEF )
REW s
EQUAT Sl 1482+ 2+NDe TeNDeC2»
HEAD 1ADD T1. 14 1 -
IF NDs 1+HEAD 1 BE CAREFUL HERE WITH T3 IF ND
SUBT 1aTla 1 1S A MULTIPLE OF T1

SUBT NDs 1 T3
MULT T3, Qo PO,

MULT T3 R R1
MULT _ T1 Qs Qi
HEAD 2ADD T2 2 2
1E ND 2 HEAD 2
sSuUBT 2+T2 2
EAT FoT2.PE P77,
MULT P7 G P8
M T D2 _pPA P9 THESE TWO _INSTRUCTIONS ARE A
MULT D2 P8 PS SAVING IF Tl IS GREATER THAN T2
1F 2+ 1 «HFAD 3
suBT Ty 1 T3
EAT FeT34PHsIN
MULT IN G G3
TRANP Pii,e BPH
TRANP G3 GM
SAMPL. _PHsPO«sGMeR14Ql e DePCo PO s Al o
TRANP K1 K
MUL T T1. R R1
SAVE S Ke K
EQUAT le Ta
SUBT 1 T1 1
IF e Ds a5 HEAD 4
HEAD 3SUBT Te 2 T3
EAT FeaT3aPHaINS
MULT IN G G3s
EQUAT 2T
SUBT 2 T2 2
HEAD &61F 1 2HEAD S
MULT PH:PS G2y
ADD G2 G3 G3
MULT PH P9 PH
EQUAT 2 T
suBT 2 T2 2
1F 2S5 .5 HEAD 6

HEAD24MULT Tils R R1
EQUAT TQ ¢C2

IF 5 «5 HEAD 4
HEAD SSUBT Ta 1o I3 —
EAT FeT34P1 INo

MULT PHeD2a P2

MULT IN G G1

Fig. 6
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MULT P2 Gl G2
ADD G2 G3 G3a
MULT P2 Pl PH
EQUAT 1 T
TRANP PH PH
TRANP G3. GM
SAMPL PH PO GM R1 Ql D PCo POsK1sAL
TRANP K1 K
SAVE 5 Ke K
SUBRT 14Tl 1
IF C2 ND HEADZ24
HEAD 41F TOa 1 «HFAD 7
HEAD1OIF 2 1 HEAD 8
SURT T 1 T3
EAT F T3 PH IN
ML T IN G Gl
TRANP PH PH
TRANP G3 GM
SAMPL. PH PO GM R1 Ql D PCs POsK1 ¢ AL
TRANP K1 K
SAVE 5 K K
EQUAT 1 T
susT 1 Tl 1
1E 2SS HEAD 4
HEAD 835UBT Ts 2 T3
EAT E _T3«PHeINs
MULT INs Go G3
EQUAT 2+ T
suBT 2 T2 2
HEAD23IF 1 2 HEADZ2
MULT PH P53 G2
ADD G2 G3 G3
MULT PH P9 PH
EQUAT 2 T
sSuBsT 2 T2 2
1F 25405 HEADZ3
HEAD22SUBT Te 1o T3
EAT F T3 P1 IN
MULT PH D2 P2
MUL T IN G Gl
MULT P2 Gl1 Ga
ADD G2 G3 G3
MULT P2 PI1 PH
EQUAT 1 T
TRANP PH. PH
TRANP G3, GM
SAMPL PHsPOsGM R1 Qls DsPCy POJK1 9 AL
TRANP K1 K
SAVE S Ke K
SUBT 1eTlo 1
IF +SeeSHEAD 4
HEAD 7SUBT PO+sQ1ls 19
RINT 19 19
Fig. 6




IF D S1+HEAD 9

SAVE SK0 . K

IF eS5ee5¢0UT 1 TRANSFER TO TRANSIENT.
HEADGIFQIUAT TG4 1., !

IF D S2+HEAD42HEAD1O
HEAD42MUL T 5 T2 T3

MULT EP T2 S

SURT I0. S S
HEAD44SUBT 2 S T4

1E T3.T4 +HEADG

ADD T2 S S

1F e S o5 HEAD4 4
HEAD43EQUAT § 2

1F 25 JS«HEFADIO
HEAD 9MULT «5 T1 T3

SUBT T TO. T4 [

IF T4 T3 HEAD41
ouT 11F DeS1eHEADL] BEGIN TRANSIENT

EQUAT S1.4 1

1E a5 4 oS aHEADLI2
HEAD1 IEQUAT Tl, 1.
HEAD121F D S2«HEADLI3

EQUAT S2 2

1F a5 o5 HFADIG
HEAD13EQUAT T2, 2
HEAD 1 48B8R 1 8

EQUAT TOs TeTOWPT,

BRING 5 Ke Kg

ADD PT PI PT

MULT K %Q4 9]

sSuBT RZ U U

BsR 2 8
HEAD 1 9JUXTR K RZ X1

SJUXTR X1 X0 X2

JUXTR X2 RZ X3

JUXTR X3 U X4

RINT T X4 «MAT
HEADISIF PTs, 1«HEADIS

1F PTes 2+HEAD16

IF PT«ND HEAD17Z

SUBT PT T T3
EQUAT PT T

ADD PI1sPTs PTs

EAT FaT34PHIN
MULT IN G G3
MULT G3 U GuU
MULT PH XxO XT
ADD XT _GU X0
IF ¢S5 +5 HEAD1S
HEAD1/IF 2 NDO HEAD17
SUBT 2 7T T3
FQUAT 2 T
EAT F T3 PH IN

Fig. 6
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ADD 2 T2 2
MULT IN G G3
MULT G3s Us GU
MULT PH X0 xT
ADD XT GU XT
MUL T D2 %XT X0
IF D CD HEAD1BHEAD19

HEADRISIFE 1 2aHEADLIS
IF 1 ND HEAD17
SUBT 1 Ts T3
EQUAT 1 T
ADD. 1 T1 1
EAT F T3 PH IN
MU T IN G G3
MULT G3 V] GU
MULT PH XO XT
ADD XT GU X0
BRING S K K
BSR 2 5
MULT K XQs ]
SuUBT RZs U V]
1F D CE HEADI8HEAD19

HEAD17SUBT ND T T3
EAT F T3+PH IN
MULT IN G G3
MULT G3 U GV
MULT PH X0 XT
ADD ‘T_GU X0
JUXTR < RZ X1
JUXTR Al X0Q X2
JUXTR X2 RZ X3
JUXTR X3 (V] X4
RINT ND X4 «MAT
END

Z1 1

o .

Z1 1

0]

ND 1

25

T1 1

073575888

T2 1

2e

Q 8 8

Q

[o]

6]

o}

0]

e}

[0}

(e}

~ Fig. 6
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BEGIN

LOAD Te Fo Ge DsPCesR13QLIIRZ+71 +NDeXO D2
HEAD 2MULT TsR1ls R
MULT TeQle Q
EAT Fe TePHWIN
MULT IN G GM
MULT D2 PH PH
MUWWT D2 GM GM
TRANP PH.. FT
TRANP GM GT
EQUAT Q P
SAMPL FTe PsGTs Ra Qe DePCa PE +KT ¢« Al
TRANP KT K
SUBRT PE Q =]
RINT P PER K K
LOAD T
IF Te TeHEAD 2
END
T 1
273575888
F 8
Q
le
-B‘
le -2
[o]
0 ~12.
0 le
1, =T
9] 1. le
0]
0 104
o
(0]
G 1
10, =10,
[»] 2
« 0001 «18393972
PC 4
10 10. le 1000.
R 1
¢ 01
Q 8
o]
0]
9]
¢]
[0]
]
o]
Fig. 7
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BEGIN

LOAD Ts Fs Gs DPCsR1sQ1sRZ¢Z1 +NDeXO D2
HEAD 2MULT TeR1l o R
MULT TeQla Q
EAT Fe TePHIN
_ MULT IN G GM_
MULT D2 PH PH
MULT D2 GM GM
TRANP PH, FT
TRANP GM  GT
EQUAT aQ P
SAMPL ETe PaGTs Rs Qo DaPCa PE + KK T4 Al
TRANP KT K
SUBT _PE 0 =)
RINT P PER K K
I QAD T
IF Te TWHEAD 2
END
T 1
2235725888
F 8 8
Q
le
=8a
le -2
o)
0 =12
o} 1
1l -7
Q ls
[o]
o] 10a
o]
Q
G 8 1
10a =10,
D 2
« 0001 e18393972
BC 4
10, 10 le 1000,
R 1
01
Q 8
Q
o]
Q
Q
0
Q
0
Fig. 8
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System output y(t) = x5 (t) vs. time

| Free motion

/‘ Ordinary sampled control

Continuous control

Sampled control, Multi-rate system




40} Optimal control functions for
" continuous and discrete control.
30

20

10

Fig. 10
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CHAPTER XVIII

MODEL~-FOLLOWER CONTROL

l. Description of the Problem: Given a system

x = Fx + Gu
(1.1)

y =K
and another, homogeneous system
(1.2) z =Lz

we wish to obtain a control wu(t) which minimizes the performance index

T
I Uy = 2l + alg Jac.

2, Theory and References: Our method will be to augment the system matrix

by L, then |y - z“é can be represented as HQHE where

Q
X F 0 G
X = B X = X+ u
4 0 L 0
H'QH ~H'Q
Q = .
~QH Q

Notice that this augmented system is not completely controllable and we
may expect problems with the behavior of the pesrformance index because of this.
Fortunately, in this application I is a stable matrix which will mitigate the

problem.
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1

3A. " The §pecific Pfébiem} This problem is taken from the paper
"Synthesis of Feedback Controls Using Optimization Theory" by F. J. Ellert

and C. M. Merriam III.

Examination of the aircraft system leads us to

- .6 - .76 .00296875 oT - 2.375
1. 0 0 0 0
F = G =
0 102.4 - .k 0 0
0 6 1 0 0
L i _ -

where X% = Fx + Gu.

In addition we have a time-varying model to follow which necessitates

enlarging the system by the direct sum with

1 T
x5 .2 0 x5
_ 0sts15
X, ! 0 -.2 X Xs(o) = 100
L.°y L A x£(0) = - 20
and
5:57 ro 1 % 15 =t s 20
1% % %
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The requirement that a second order system be used after t = 15
is the only reason for using ore prior to that time. It may appear that this
does not satisfy the altitude requirements as specified in the paper. How-
ever & small amount of analysis shows that the differences are less than one

percent since

100 e™*7

4.,9787071

and

- 20 e"d

- .9957k1k1

compared with the stated desiderata of 5 and - 1. Furthermore the system
as we simulate it does have x5(20) = 0.

The error function may be written as

)2+ qX§ +

il

1 2
L = %(X5 - xh)2 + ~:p3(x5 - %X, 5[”};“2 + u”]

with a terminal weighting of

5 5 = Hagleg = %)% + o (e, = %)% + alx, - 29)2)

where 20 can be written as —_ radians and hence we may write the
torm as 57.2957795

2
cpgrl,(x2 + 034906586 x6)

Using X¢ to specify the 20 terminal value of X, is of course

purely coincidental, we can do this because =x.(20 is a known constant,
’ 6
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Considering Case III in the paper, we define

and

99.

.0001

0

0

e OOOl

for 15 =t = 20,

99

0
-

lo.
0
0

0

. 34906586

(@

.Ol

0

0

"oOl

0

0

0
.00005
-, 00005

0

0

0
.00025
-.00005

0

0

0
001
-.001

0
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LA, Results: Running this on the program appearing in Fig. 1, we acﬁieved

réesults agreeing with those appearing in the paper. For instance

kll(O) = 4,18 k. ,(16) = L.22
kle(o) = 2,20 k12(16) = 3.25
le(o) = ,00675 k13(16) = .013%
klh(o) = ,00298 klu(l6) = 00642

The graph of altitude for the high, nominal, and low initial condition is
in Fig. 2. As would be expected with a relatively inaccurate integration
tool such as ASP, we do not get the same pitch angles at termination as

the paper. However, the errors are less than .0050.

I.C. lulmaxdeg. 6(20. )deg. n(20)ft, h(20)ft/sec. ia[maxdeg.
1 b - .033 - .103 - .76 1.0
2 16.3 .003 - .025 - .82 1.8
3 3.8 .038 .053 - .87 3.

Having obtained these results, we attempted to improve upon them.
There were two points at which improvement was possible. One was at the
beginning of the approach where the initial (.5 sec) transient gave
extremely large control values compared with the remainder of the trajec-
tory. The other was at the terminal time, when it appeared that state
variables could be closer to the desired values. We felt that these
desiderata could be accomplished because of the extremely low magnitude

of control used everywhere except initially.

We mention here one confusing point in the article. Initial angle
of attack, o, is suppoeed to be 14°, yet in each of the three initial con-

ditions given, @ =y, hence g = O.
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In fact the condition that

o) = ¥ (e(0) - 2O

S

be zero requires that

afo) = 6(0) - v(0) = 6(0) - %ﬁg} = 0.

Under these circumstances we deleted any consideration of «, though it
will be found that if of(.) is satisfactorily bounded in the article,

it is also satisfactory in our runs.

To attack these problems, we needed a more flexible program; one
capable of modifying the index weighting and the control gains. In addi-
tion we wanted more printout at the critical initial and terminal times.
Using some hindsight we reran the problem with the program in Fig. 3, to
check agreement with results using Fig. 1.

We then increased S (terminal weighting) by a factor of 100 by
removing the two MULT OT, S, S instructions, to improve terminal
conditions, This affected the initial transient very little but gave the

following terminal values.

1.C. lal o 8(20) n(20) n(20) |ot] o
" 1.72 - .007 - .93 1.1
16.1 1.73 - .005 - .93 1.8
3.5 1.7k - .003 - .9k 3.

This now looks very satisfactory except for the large control excur-
sions. Notice that with increased weighting terminal conditions appear

independent of initial conditions,.

We then attempted to reduce the control requirement by reducing Q
in the early part of the run, using the program in Fig. 4, This reduced
Q by a factor of 1070 on [1, 2] and by an sdditional 107> on [0, 1],
and gave the following results:
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.. ul,,  e(2)  n(0) k(20 ol
1 - 13.0 1.73 - .006 - .93 - 4.8
2 3.3 1.73 - 007 - .93 2.5
3 19.1 1,73 - .007 - .93 6.2

Since we have lowered Q by a factor of 10-6 and still have a
fairly significant gain matrix, we infer that F has at least one un-
stable eigenvalue and therefore K cannot be indefinitely reduced by re-
ducing Q. Despite the fact that u is within the bounds,

- 350 su =15 prescribed, we would like to show what can be done in such

a case if the bounds were, e.g, -8° = u s 8&°,

An optimal system cannot be made to satisfy because K cannot be
sufficiently reduced, but an ad hoc procedure of reducing u to the bound
may very well provide the answer., This is particularly true in a case such
as this where most of the control magnitude is used in the initial surge.

To appro<imate the effect of control stops we used the program in Fig. 5,
multiplying K by A(t) (A(0) = .37, A(.7) = 1) before computing control.
This gave the following results:

I.C. IuImax 8(20) n(20) n(20) Ialmax
1 - 4,6 1.73 - 006 - 933 - 2.2
2 2.8 1.73 - .007 - .933 2.6
3 7.8 1.7k - 007 - 93 5¢ 4

The altitude profiles for this run appear in Fig.6, in Fig.7 and 8 we give
plots of k3 and kh as we computed them from Fig. 1 and for the final run
(K modified) as computed from Fig. 5.

2B. The Specific Problem: This is an aircraft problem received in a private

communication from J. S. Tyler, Jr. It is very similar to the one described
in J. S. Tyler, Jr., 'The Characteristics of Model-Following Systems as
Synthesized by Optimal Control," IEEZ Trans. on Automatic Control, vol. AC-9,
No. 4, October, 196k,
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The plant is specified by

0 o |
0 -3.91
035 0
-2.53 51

0 1

0 -2.93
086 0

0 - .0k9

0 1

0 -1
.086 0
.0086 086

475

2.59

-73.1h

8.95

We define the performance index by

where y = Hx,

S U+ e
0

H= [Iu, —IJ-I-] and
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Q=5T1,

4,B Results: ILet be, Kff denote respectively the gain matrices from the
plant and from the model. Then Tyler gives the values

i <253 - .185 1.58 -2.34
Ko =
-2.21 -1.83 .7 .01_J
.104 377 -3.63 Lh.16
Kep =
2.035 2.211 -15.3 2'59J

Using the program appearing in Fig. 9, we calculate the matrices

- .25% - .185 1.584 -2.342

K. =
o _2.21k -1.827 .700 .010
.104 <377 -3.630 L.161

Kep =
2.035 2.211  -15.309 2.589
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JUNE 28. 1965
BEGIN
REW 5
REW 6
WEF 5
LOAD Fe GoT1sT2sF14G1sT3320+DTsTSy Qe1Q1+TQsDS
REW 5]
WEF 6
SAV: =TTy T3 Fos Fs Gy Gy Qs QiTZ2s TaFly FaGle GeQTs TWrT3 T
REW &
HADZISUET ZCsD1T z0
SAVE &2Cs T
TF ZOs 1SR ALZI
HEAD22SUBT  20+DSs 20
SAVE &E20s T
1F 20, TQ HEADZZ

LLOAD T e e BeCNIL2ID3IPCIRZIZR s TWa TLWR]T STaXXe TR«XOsT1 R 2
WRITE CPTIMAL FEEDEACK CONTROL
REW 5 '
REW [s]
REW 7
wEF 7
CGUAT Tl TaTLTF
TRANE Tl 17
“RING S TeTla Fs Fo Gs CGs G G TaTZs
MULT ITs G 32
MULT ZZs 11 [eX)
LT g S S
VOLT I > 32
MULT 232 TI S
O 1 ol
MUILT TRs Fo 32
UL S Tl 1K)
MULT TRs & e
A

24N o GT
rJed IX2 AR jory
MULT Ce S L)
VMULT Ges KN Gk e -
SUST FeGKa CF o
SAVE TCEWCFy Ko Ko T T
BRING 6 TPl
suBT ZRa T MF «
TRANP G CTa
MULT RIGTo Co
MULT Ges Co GCo
JUXTC MF s GCo TP
TRANP e FTos
JUXTC QsF T [
JUXTR TP+EBT PHa
ADD Tl T2 Tl
MULT «eZaT1 TZ
ZQUAT Pl T+sCNeCDo T PRINT TINMZ VMUST CTOMzZ SETWeeN TLO

Fig. 1




SUBT TFe T TUs AND THE LAST BREAK TIME.
FEQUAT TeTF
ETPHI PH TUP1sHT,
MULT TU D3 *34
MULT HT D2 35
ADD 34 35 34
RTICAT S Pls Ty34WFPTeXXs Zv KeALCS
RINT Se P
TF ZO+ZOHEAD &
HEZAD SBRING 5 TeTle Fe F G G Q@ Q T T2
RINT TI. T
MUL.T ITs G 32
MULT 32 Tl Qs
BSR 1 5
MULT TRs Fo 32
MULT 32 TI1 F
MULT TR G G
MULT G < GK
SUEBT F CGK cE
SAVE TCFeCFs Ks Ky T T
HEAD 1SUBT ZRs Fo TAF s
TRANP G GTo
MULT RI«GTo Co
MULT Gs Co GCy
JUXTC MF 4GCo TP
TRANP  F, FTe
JUXTC QsFTa BT
JUXTR TRIET, Pt
ADD TleT2 Tl
MULT ¢S+ Tl T2
HEAD 61F PlseTZsHEAD 2
EQUAT T2+ TsZ0sCDy
IF ZOsZCsHEAD 3
HEAD 2EQUAT Pls TsONsCD
HZAD 3SURT TEe To TUs
EQUAT TaTF s
ETPHT PHsTUP1oHT s
MUL T TUsT3 24
MULT HT Lz 35
ADD 34 3% 34
RICA S Pls CsZ244PC, S Kell s
HEAD 8MULT Gs Ko GK
SURT FeGK CF s
SAVE TCFaCFy Kg Ko T T,
IF TWe TeHEAD 4
HEADIOIF «S5sCoWHEAD 5
BRING & TeFl,
1F ZO+WZOWHEAD 6
HEAZ 4388R 4 7
BLLCT IT
SRING 7 TeT1leCFsCFy Ko Koe TaTZ2
EsSR 7 7
ADD TisTZ T3
Fig. 1
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MULT «5 T3 HT o

SUBT HT T2 TU

MULT TR XO X0

EQUAT HT T

ETPHI CFeTUPH

MUL T Ko XOs -~

MULT KeTR KR

MULT TIe«XOs X

TRANP TR ZK »

MULT ZKs S 41,

MULT 41 TR S

RINT T2, Se P KRy K XaX0 =Us=U

WRITE THE PRZCEDING WERE Pes Ks Xs AND ~U AT INITIAL TIME.

MULT PHsXO» )

EQUAT 14 X0OeZOsCDo
HEAD 7BRING 7 TaT1sCFaCFy Ko Ko TeT2s
HEAD24BSR 7 7

IF T2+T1sHEAD 9

sUBT T2s T TUs

ETPHI CF TUsPHo

MULT PHyXO» X0y

EQUAT T2+ T

MULT TI X0 X

MULT KaXOs -Us

MULT KeTR o Ky

JUXTR KR«sRZs LA

JUXTR #44 X *5

JUXTR #5 RZ *6

JUXTR #6 -U *7

RINT T *7 ¢ INF

ADD TleT2 T3

MULT 5 T3 HT

sSUBT HTe T TU

ETPHI CFRsTUPH

o MULT  PHIXO — XOs

EQUAT HTs T

IF TleTLaHEADLI2HEAD 7
HEAD 93UCT Tl T TUs

ETPHI CFsTUPHe

MULT Prie X0 XO

EQUAT T1s To

BRING 7 TeT1eCFsCFs Ks Ko TaTZs
HEADZ23BSR N

ADD T1sT2s T3

MULT NEERED HT

SUBT HTs To TUs

ETPHT CFsTUsPHY

MULT PHeXO XO s

EQUAT HTs To

IF T1eTLHEADIZ2HEAD 7
HEADIZERING TCFsCF e Ko Ko ToT20

SUsST T24 To TU

ETPHI CF+TUPH

Fig. 1
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MULT  PHsXOs 32
MULT TI 32 X
MULT Ke32 -uU
MULT Ke TR KR
RINT T2, KRe K Xs X —Us-U
WRITE THE PRECEDING WEREZ Ks Xs AND =U AT FINAL TIME.
END
F 6 6
-5 ~e76 00296875 0 [¢)
e} le o] o] o]
[0) [e] 0 1024 —e4
¢} o] [0] ] 0
1e [s] 0 o [¢]
0 Q o] 0 le
[¢) 0 [¢) o) o]
e}
G (=) 1 -
2375 0] 0 [0} o]
U
Tl 1 1
1 7¢O
T2 1 1
125
F1l 6 6
e O —e /D e UUZTIDO 7D U U
e} le 0] [¢] 0]
U U U TUZe4d =4
o] o] o] 0 o}
T e U U U U
o] 0] 0 -2 o]
U U 9] 8] 9]
_.2
GI [3) 1
-2¢375 0] (o} 0] o]
@) U
T3 1 1
_159
20 1 1
20,
DT 1 1
«cH
TS 1 1
1UeUD
Q S} 6
GG (8] O [0} (0]
0 0 0 o] Q
[6) O O [o] «000T
6] o} -« 0001 o] 0]
O ¢ OOUUT -e Q0O0US O 6]
Q 6] -« 00005 « 00005 0
9] 8] =«0001 0] [o]
« 0001 ’
QT & [}
Fig, 1
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0] o] 0] 0] 0
Y 0 0 0 )
] 0] (o} o] 0
o « 00005 —e 00005 o} [¢]
0O 0 -e¢ 00005 « 00005 o]
[6] o} 0 [¢] [¢]
]
TQ - 1 1
« 05
DS 1 1
5
20 1 1
o}
=] 1 1
3=}
ON 1 1
le
D2 1 3
¢} le o]
D3 1 3
0] o} le
BT 1 4
[0} (6] o] ile
RZ 1 &
0] C 0] [0} 0
U
ZR & 6
U U O U (8]
o] 0 o] 0 0
U U O O 9)
0] Q 0] o 6]
U U O [@] O
O o} ] 0 0
o %) 9] 9] 9]
C
w Y 3
« 0005
[ 1 b
2C
=1 1 13
le
S [S) [S)
0] 6] c 0 0]
U U De O J
o] « 17453293 ] o} « 005
U U -« U0D O O
o] « 0C0O5 -e00C5 0 o]
J U = JOUD s OUUDS O
o] 017453293 -4005 o] ]
ULl TUTZ330
XX & &
T e 19} 8] O 6]
Fig. 1
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BEGIN

- 49l -

REW 5
REW : 6
WEF S
LOAD Fo GeTlsT24F1+G1sT3920+sDT+sTSs QesQl+TQaDS+ON
REW S
WEF 6
SAVE STls Te Fs Fo Gs Ge Qo QeT2s TeFle FoeGle GoeQlos QsT3e T
REW 6
SUBT 204+TQ 20
SAVE 620 T
SUBT 20,TQ 20
SAVE 620 T
SUBT 20.TQ 20
SAVE 620 T
SUBT  20.TQ 20
SAVE 620 T
SUBT _20,TQ 20
SAVE 620 T
HEAD21SUBT 20+DTs 20
SAVE 620s Ta
1F 20, TSWHEAD2]
HEAD225UBT 20+DS 20
SAVE 620y T,
IF 20+ONsHEADZ22
SUBT 20+TQ 20
SAVE 620, T
SUBT 20.TQ 20
SAVE 620y T
SUBT 20.TQ 20
SAVE 620 T
SUBT 20+TQ 20
SAVE 620 T
SUBT 20,.TQ 20
SAVE 620 T
SUBT  20,TQ 20
SAVE 6204 T
suBT 20,TQ 20
SAVE 620, T
" SUBT 20+TQ 20
SAVE 620+ T
sSuBT 204+TQ 20
SAVE 620 T
SUBT 20+TQ 20
SAVE 620+ T
SUBT 204+TQs 20
SAVE 620+ T
SUBT 20+TQo 20
SAVE 620 T
sSuBT 20+TQo 20
SAVE 620s T
SUBT 204+TQs 20,
SAVE 620 T
Fig. 3




SUBT 20+TQoe 20 s

SAVE 620y T
SUBT 20+TQs 20
SAVE 620+ T
SUBT | 20+TQy 20
SAVE 620+ T
SUBT 20+TQ 20
SAVE 620 T
SUBT 20+TQs 20
SAVE 620, T
SUBT 20+TQo 20
SAVE 620 T

RINT 20T
LOAD ZO+eS+ONeD2+D3+PC1RZeZR+TWsTL1RIy SeXXsTRIXOSTI R 2 TN OT

LOAD H

WRITE ORPTIMAL FEEDBACK CONTROL
REW S
REW 6
REW 7
WEF 7

EQUAT TLas TaTL «TF
TRANP T1, 1T .

BRING S TeTle Fe Fe Ge Gy Qs Qo TaT2y

MULT ITs Qo 32

MULt 32471 Q'

MULT OT Q €]

MULT OT Q Q

MULT 2 S S

MULT OT S S

MULT OT s S

MOLT IT s 32

MULT 32 T1 S

"BSR 1 '

MULT TR Fo 32

MULT 32,71 Fo N
M T TR. & [

REW 7 ) )

TRANP G GT

MULT RI+GT. Cu ' ' i
MULT Cs S K

MULT Gy Ko GK's
suBT FeGK CF o

SAVE TCF W CFy Ky Ko T T
BRING 6 TPl

SUBT  ZRs Fo MF
TRANP G GT

MULT RT+«GTo Co
MULT Gs Co GCo,
JUXTT MF «GT TP

TRANP F FTs

JUXTC Q+FTo BT,
JUXTR TP«BT PHy

ADD TI 72 T1,

Fig. ?
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MUL T

e5.T1 T2

EQUAT PIsy TsON+CDy A PRINT TIME MUST COME BETWEEN TL
SUBT TFs T TU AND THE LAST BREAK TIME,.
EQUAT  TWTF,
ETPHI PH TUP1 sHT»
MULT TU D3 34
MUL T HT D2 35,
ADD 34 35 34
RICAT S Pls Ca344PCaXXs Ss KsAL s
RINT Ss P
1F Z0+ZOWHEAD 8
HEAD SBRING S TeTlsy Fo F G G Q o T T2
RINT T1ls T
MULT ITse Qo 32
MULT 32 TI1 Qo
MULT OT Q@ Q
MULT OT @ Q
ESR 1 5
MULT TRs Fo 32
MULT 32 T1 F o
MULT TR G G
MULT G K GK
SUET F &K CF
SAVE TCFWCFy Ke Ko To T,
HEAD 1SUBT ZR,s F. MF
TRANP G GT
MULLT RIWGTs Cs
MULT Gy Co GCo
JUXTC MF 4GCo TP
TRANP F, FTo
JUXTC QeF T 2T,
JUXTR TP «8T., PHs
ADD Tl T2 Tl
MULT «eSsT1la T2
HEAD 6&1F PT2T2+HEAD 2

EQUAT T2, T+20+CD,
TF Z0+20FEAD 3
HEAD 2EQUAT PI, T+ONLCD
HEAD 3SUBT TFs T, TU» ) o
ZQUAT TsTF &
ETPHI PHWTUsPLl +HT
MULT  TUWD3» a4
MULT HT D2 25
ADD 34 35 34
RICAT S P1s C+3a,PC, S+ KaALs -
HEAD 8MULT Ge Ko GKs
SUBT  FGK» TF. o
SAVE TCFsCFo Ko Ko T T
1F TWse TsHEAD 4
HEAD10OIF ¢S WCDLIHEAD 5
BRING 6 TPl
17 ZO4sZOWHEAD 6
HEAD 4MULT ON O a B

Fig.

N
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JUXTC Q FT BT

JUXTR TP BT PH
LOAD Tws

IF T+TWsHEADILO
BSR 4 7

BLOT 1T

BRING 7 TsT1sCFaCFs Ko Ko TaT2
LCAD (LM TM

MULT LM,y Ky K
BSR 7T 7

ADD T1+T2s T3
MULT «5 T3 HT o
SUBT HT T2 TV
MULT TR XO X0
EQUAT HT T

MULT G K GK
sSuBT F GK CF
ETPHI CFsTUWPH»
MULT KeXOs -Us
MULT KeTR KR
MULT TI+XOy Xy

TRANP TR ZK o

MULT ZKs S 41 o B

MULT 41 TR S
MULT H X HX
RINT T2 Ss P KRy K XeX0 =Us—-U HX AL
WRITE THE PRECEDING WERE P+ Ks Xs AND =-U AT INITIAL TIME.
MULT PHeXO 1o
EQUAT 14X0+Z0+CD
HEAD 7BRING 7 TeT1eCFeCFs Ko Ky TaT20
IF T TMsHEADZ24
LOAD LM
MULT LM, Ko K
MULT G K GK .
SUBRT Eck CF
HEAD24BSR 7 7
TF TZ2«T1HEAD 9
sSuBT T2s T TU

ETPHT CF TUJWPH»
MULT PH«XO X0

EGUAT T8, T»

MULT T14XOo» X
MULT KaeXO =-Us
MULT KyTR KR
MULT H X HX
JUXTR KR+RZ» *4
JUXTR ¥4+ X *5
JUXTR #5 RZ zZ5
JUXTR Z5+HX Z6
JUXTR 26 RZ z7
JUXTR 27 =U *7
RINT T *7 4 INF
- T ADD Tl.T2 T3

Fig. 3
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MULT «5.7T3 HT

SUBT HT. T TU

ETPHI CﬁtTUopH'

MULT PHWX0 X0

EQUAT HTs T,

1F T1+TL+HEAD12HEAD 7
HEAD 9SUBT Tle T TU»

ETPHI CF+TUWPH

MULT PHyXOy X0y
EQUAT Tl T

BRING 7 TaT1+CFaCFs Ko Ky TeT2s
1F TsTMsHE AD23
LOAD LM
MULT LM, Ko K
MULT G K GK
sSuBT F GK CF
HEAD23BSR 7 7

ADD T14T2y T3

MULT «5eT3, HT
SUBT HTs To TU

ETPHI CFsTUWPH,
MULT PHsXO0y X0

EQUAT HT, To
IF Tl1sTL«HEAD12HCAD 7

HEAD12BRING TCFsCFy Ky Koa TeT2,
suBT T2y To TU

ETPHI CFsTUWPH,
MULT PHsXO0, 32

MULT T1 32 X
MULT K32 -u
MUCT KesTR KR
MULT H X HX
RINT T2, KR+ K X X =Us=U HX AL
WRITE THE PRECEDING WERE K. Xy AND =U AT FINAL TIME.
END
F (<) [S)
-6 —e76 «¢00296875 o O
0 1. 0 ] ]
[¢] ] o] 102.4 4
0] o] o] 0] 0
1 [§] o] o] o]
; [¢] 0 0 0 .
j 0 6] o] 0 0
! 0]
G [S) 1
~24375 0 o] 0
0
T1 1 1
175
T2 1 1 o
125
| F1 6 6 e
—e5 ~e76 « 00296875 0 ’
Fig. 3
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0 le 0 0 0
0 O 0 102‘4 -4
o 0 0 o) 0
le 0] o] 0] (o] ~
. © o 0 -2 0
0 o] 0 0 0
)
G1 6
—-2¢375 0 0 0 0
o] o]
T3 1
-15.
20 1
20.
DT 1
25
T8 1
10,05
Q 6
99.
0 0 0 0 0
o 0 o] 0 « 0001
o) 0 =.0001 0 o)
0 .00005 -.00005 0 0
¢] 0 -—.00005 200005 o]
0 o] -.0001 o) 0
- 0001
Q1 6
99. 0 0 0 0
0 0 0 0 o]
0 0 0 0 0
0 0 0 o} o]
0 . 00005 -.00005 [¢) 0
o} 0 -.00005 +00005 o)
- 0 o] 0 o] 0
TA 1
« 05
DS 1
5
ON 1
1.025
20 T
0
5 T
05
ON 1
le
D2 T
0 1. 0
D3 T
0 0 le
PC 1
Fig. 3
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0 0 0 le
RZ 1 6
0 0 o] o) o]
o]
ZR 6 6
0 0 0 o] o]
0 0 0 0 0
0 0 0 0 ]
[¢) 0 0 o] 0
0 0 0 0 0
0 o) 0 0 0
0 0 o] 0 ¢
0
TwW 1 1
2.005
TL 1 1
20'
RI 1 1
100.
s 6 &
C 0 0 0 0
o] 0 Se o 0
0 17453293 0 o] « 005
o] 0 -.0085 0 0
0 « 0005 -.0005 o] o]
o] o] -.0005 « 0005 0
0 17453293 -+005 o) 0
«011092348
XX 6 6
1e 0 0 0 o)
0 0 1. §) o]
o] o 0 0 le
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JUNE 28+ 1965

BEGIN
REW -
REW A
WEF S
LLOAD Fe GeTleT2eF13G1eT3420DTTSs QeQlaTQeDSHON
REW S
WEF &
SAVE STle Ty Foe Go Gs Qs Q9sT29 TeFle FeGle GoQle QeT3s To
REW 5
sSUBT 20.TQ 20
SAVE 620 T
SUBT 20.TQ 20
SAVE 620 T
SUBT 20.TQ 20
SAVE 620 T
SUBT 20.TQ 20
SAVE 620 T
SUBT 20.TQ 20
SAVE 520 I
HEAD21SUBT 20+DTs 20
SAVE H£520e T
IF 20+ TSWHEAD21
HEADZ22SURT 2Q04DSe 20
SAVE 6204 T
1F 20 ONJHFE AD2 2
suBT 20+ TQ 20
SAVE 5204 T
SUBT 20.TQ 20
SAVE 6204 T
SUBT 20,TQ 20
SAVE 620y T
SUBT 20,.TQ 20
SAVE 620 T
suBT 20+TQ 20
SAVE 6204 T
5uBT 20+7TQ p=48]
SAVE €20 T
suBT 204.TQ 20
SAVE 620+ T
SUBT 20.TQ 20
SAVE 6204y T
SUBT 20+TQ 20 i
SAVE 620e T !
SUBT 20+TQ 20 :
SAVE 620+ T
SUBT 20+TQo 20
SAVE 6204 T
SUBT 20+TQ» 20
SAVE £20, T
SUBT 20+TQs 20
- SAVE 6204 T 4
SUBT 204+TQy 20

Fig. 4
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SAVE 620¢ T
SUBT 204TQa 2Qa

SAVE 620 T
SURBT 204TQe 20
SAVE 6200 T
SUBT 20 4 TQ 20,
SAVE 620+ T
sugT 20,TQs 20 4
SAVE 620, T
SUBT 204TQs 20,
SAVE 620+ T
sSusT 20:TQs 204
SAVE 620+ T

RINT 20,T

LOAD Z0+eS+ONeD2+D3+PCeRZIZRsTWsTLIRI® SeXXeTReXOsTI R 2 TN OT
LOAD H

WRITE OPTIMAL FEEDBACK CONTROL

REW 5
REW 6
REW 2
WEF 7

EQUAT Tl o TeTlL «TF

TRANP TI1, 1T

BRING S TeTls Fos Fs Go Gs Qo Qs ToT2s
MULT ITs Qo 32
MUL T 324T1a Qs
MULT OT Q@ Q
MULT oT Q Q
MUL T 2 8 S
MULT 1T S 32
MULT 32 TI S
BSR 1 5

MULT TRs Fu 32
MULT 32.T1 Fa
MULT TR. G Ge
REW 7

TRANP G GT
MULT RIGTo Ca
MULT Cs S K

MULT Ges Ko GK o

SUBT FoeGK s CF o
SAVE TFCFsCFs Ky Ko Te T

BRING 6& TPl
SUBT ZRs Fo MF o

TRANP G GT e«
MULT RI«GTo Ca

MULT Ges Co GCo
JUXTC MFJGCe TP

TRANP  F, FToe
JUXTC QeFTo BTa

JUXTR TP.«BTs PH s
ADD T1 T2 T1,

MULT «S0T1 T2

Fig. 4
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EQUAT Pls TeONsCDo A PRINT TIME MUST COME BETWEEN TL
SUBT TFa T Tiia AND THE (LAST BREAK TIMEe
EQUAT TsTF s
ETPH]I PH TU:P1l eHTe
MULT TU D3 34
MULT HT D2 35,
ADD 34 35 34
RICAT Q Ple Ca34,PCaXXXe Se Kalbl s
RINT Se P
1F Z0 L Z0+HEAD 8
HEAD SBRING 5 TeTle Fe F 6 G Q G T T2
RINT Ti1e T
MULT ITe Qo 32,
_MULT 32 T1 Qs
MULT OT @ Q
MULT OT Q Q
BSR 1 S
MULT TRae Fo a2
MULT 32 TI1 F
MULT TR G G
MULT G K GK
SUBT F GK CF
SAVE TFCF+CFy Ko Ko To To
HEAD 1SUBT ZRe Fo - MF o
TRANP G GTo
MULT RIsGTs Cao ~
MULT Gas Co GCo
JUXTC MFE +GC o TP
TRANP Fo FTs
JUXTC QaFTa BT
JUXTR TP BT PHe
ADD T14T2s Tl
MULT  «S5eT1o T2
HEAD &IF PlaT2.HEAD 2
EQUAT T2+ T+Z0+CDo
I1F 20420 HEAD 3

HEAD 2EQUAT
HEAD 3SUBT

Pls TsONs+CD
JEs Ta Tlla

EQUAT TWTFs
ETPHI PH«TUPl sHT
MULT TUWD3 34
MULT HT D2 35
ADD 34 35 34
RICAT S Ple Ce344PCo Sy KeAlL s
HEAD 8MULT Gs Ko GK s
SUBT FeGKoe CF s
SAVE TCFWCFs Ko Ko Te Ta
1F TwWe TWHEAD 4
HEAD1OIF ¢S5+CDHEAD S
BRING & TPl
IF ZO+ZOWHEAD 6
HEAD 4MULT ON _Q Q
MULT OT % Q

Fig. b
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MULT OT @ Q
MU T QT fe Q
JUXTC Q FT BT
JUXTR TP _@T BH
LOAD Tws
1E ToTWeHEADLO
BSR 4 7
BLOT 1T
BRING 7 TeT14CFsCFs Ky Ko TsT2
LOAD LM T™M
MULT LM, K, K
BSR b 4 b J
ADD TleT2 T3
MULT a8 T3 HT o
SUBT HT .T2 TU
— MULT TR _XOQ X0

EQUAT HT T
MULT G K G
sSuBT F GK CF
ETERHI CE o Tl Db
MULT KeXOs =-Us
MULT KeTRa KR o
MULT TIeXO» X
TRANP TR, 2K «
MULT ZKs S 41,
MULT 41 TR S
MULT H X HX
RINT T2, Ss P KRe K XeXQ mlyg=ly HX Al
WRITE THE PRECEDING WERE P, Ko X, AND =U AT INITIAL TIME,
MULT FH«XOo 1a
EQUAT 14X0eZ04+CDs

HEAD 7BRING Z TeT1sCFsCFs Ko Kas TsT2a
IF TeTMHEAD24
LOAD (M
MULT LM, Ky K
MULT G K GK
SUBT F GK CF

HEAD24BSR A 4
IF T2+T1+HEAD 9
SUBT _T2. Ts TU
ETPHI CF TUPH»
MULT PHeX04 X0 o
EQUAT T2+ T
MULT TI1aX0a X
MULT KeXOs -Us
MULT KaTR« KR4
MULT H X HX
JUXTR KRWRZ *4 4
JUXTR %44 X *S
JUXTR *¥5 p7 Z9
JUXTR Z54HX Z6
JU TR Z6 RZ 27
JUXTR Z7 =-U *7

Fig. 4
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RINT Ts #*#7 ¢ INF

ADD Tl.T2 I3

MULT «54T3 HT

SUBT HT. T TU

ETPHI CF+TUWPH

MULT PHeXQ X0

EQUAT HTs To

1E T1aTL HEADI2HFAD 7

HEAD 9SUBT Tls To TU
ETPHI CF TUPHS

MULT PHesXOo XOs
EQUAT T1ls T

BRING 7 TeT1sCFeCFe Ko Ky TeT2
1E T.TMJHE ADZ23

LOAD M

MULT LMe Ko K

MULT G K GK

SUBT £ GK CF

HEAD23BSR 7 7
ADD T1eT2 T3

MULT ¢S+ T3 HT
SURT HTs T TUa

ETPHI CFsTUWPH
MULT PHeXO4 - XO4

EQUAT HTs T
IF T1.TLeHEADIZHEAD 7

HEAD12BRING TCFaCFs Ko Ks TaT2s
sSuUBT T2s T TUs

ETPHI CFsTUsPH
MULT PH«XOQs 32

MULT T1 32 X
MULT K432 -y
MULT  KsTRs KR
MULT _ H X HX
RINT T2, KRs K Xs X =Us=U HX AL
WRITE _ _THE PRECEDING WERE K. Xs AND FINAL TIME.
END
= & &
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JUNE 28+ 1965
BEGIN

REW S

REW <Y

WEF 5

LOAD Fe GeT1eT24F1¢GleT34204DTsTSe QeQ1:TQeDS«ON
REW )
_WFF =Y

SAVE STls Te Fo Fe Gs Gs Qo GeT29 TsFle FaGls GesQls QeT3s To
PEW A

SUBT 204+TQ 20
SAVE 620 T
SUBT 20+TQ 20
SAVE &20 T
SUBT 20,TQ 20
SAVE 820 T
SUBT 20.TQ 20
SAVE &20 T
SUBT 20,.TQ 20
SAVE 620 T

HEAD21SUBT 20+DT» 20
SAVE 6204 T,
1F 20+ TSWHEAD21
HEADZ2Z2SUBT 20 4DS s - 20
SAVE 620 T
1E 20 +ONsmEAD22
SUBT 20,TQ 20
SAVE 620+ T
SUBT 20+TQ 20
SAVE 620y T
SUBT 20.TQ 20
SAVE 620, T
SUBT 20.TQ 20
SAVE 6204 T
SUBT 20.TQ 20
SAVE 620 T
SUBT 20,TQ 20
SAVE &204 T
SUBT 204+7Q 20
SAVE 620, T
SUBT 20,TQ 20
SAVE 620, T
SUBT 20,4+TQ 20
SAVE €20, T
SUBT 20.TQ 20
SAVE 620 T
SUBT 204+TQ» 20
SAVE 620, T
SUBT 204+47Qs 20
SAVE 620, T
SUBT 20+TQs 20
SAVE 620. T
SUBT 204+TQ» 20
Fig. 5




SAVE 620, T
SUBT 204TQs 204

SAVE 620+ T
SUBT 20.TQs 20,
SAVE 620+ T
SUBT  20.TQs 204
SAVE 620+ T
SUBT _20,TQa 20
SAVE 620, T
SUBT __204TQa 20
SAVE 620, T
SUBT _ 20,TQs 20.
SAVE 620 T

RINT 204 T

LOAD ZO+sSsONID2+D3+PCIRZsZReTWeTLIRI s SeXXeTR4XO0sTI R 2 TN OT
L OAD H

WRITE OPTIMAL FEEDBACK CONTROL
REW 5

REW 6

REW d

WEF 7

EQUAT Tl s TaTL «TF,

TRANP Tl 1T

BRING S TeaT1lse Fa Fo Ga Ge Qs Qo ToT2s
MULT ITs Qo 32,
MULT 32Tl Qe
MULT OT Q@ Q
MULT OT O Q
MULT 2 s S
MULT 1T § 32
MULT 32 TI S
BSR 1 S

MULT TRe Fo 32
MULT 32.T1 Fe
MULT TRs G G
REW iy 4
TRANP Gy GT

MUL T RIGTa Ce
MULT Cese S Ko

MULT Gs Ko GKa

sSuUBT FsGK o CFs
SAVE TCFEsCFe Ko Ko Te Ta

BRING 6 TPl
SUBT ZRs Fa MFE o

TRANP G GTo
MULT RILGTa Ca

MULT Gs Co GCy
JUXTC ME ¢GCae IP.

TRANP F FToe
SUXTC QeFTyo BT

JUXTR TP +BT PHo
ADD T1 T2 Tl

MULT ¢54T1 T2

"Fig. 5
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EQUAT Pls TsONCDo A PRINT TIME MUST COME BETWEEN TL
SUBT TFe Ts TUs AND THE | AST BRFEAK TIME,.
EQUAT TsTF
ETPH]I PH TUsP1l +HTa
MULT TU D3 34
MULT HT «D2 s 35
ADD 34 35 34
RICAT S Ple Ce344PCaXXa Sa KAl o
RINT Ss P
1F Z0.Z0eHEAD 8
HEAD SBRING S TeTle Fe F G G Q Q@ T T2
RINT T1. T
MULT ITe Qo 32
MULT 32 TI1 Qs
MULT OT Q@ Q
ML T oT Q Q
BSR 1 5
MULT TRe Fa 32
MULT 32 TI1 F
MULT IR G G
MULT G K GK
SUBT F GK CF
SAVE TCFWsCFRs Ko Ko Ts T
HEAD 1SUBT ZRe Fo MF o
TRANP G GT s
MULT RI«GTs Cs
MULT Gs Co GCs
JUXTC MF 4GC o TP
TRANP F FTo
SJUXTC QsFTs BT
JUXTR TP BTy PH
ADD T1leT20 T1ls
MULT «eSeTly T2
HEAD 6]F Pl+T2sHEAD 2
EQUAT T2¢ TeZO+CDo»
IF Z0O+4ZQsHEAD 3
HEAD Z2EQUAT Pls TeONsCD
HEAD 3SUBT TFs Ty TV
EQUAT T+TFs
ETPHI PHsTUP1 «HT s
MULT TUWD3 34
MULT HT D2 35
ADD 34 35 34
RICAT S Pls Cs344PCy Ss KeAlL s
HEAD 8MULT Gs Ko GK»
SUBT FeGKo CF s
SAVE TCFsCFe Ko Ko Ts Ts
IF TwWe TeHEAD 4
HEAD10OIF «S¢CDWHEAD 5
BRING & TPl
IF ZO04+Z0+HEAD 6
HEAD 4MULT ON Q@ Q
MULT OT @ Q
Fig. 5
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MULT OT Q Q
MULT QT Q Q
JUXTC Q FT BT
JUXTR TP BT PH
LOAD TWe
IE ToTWeHEADIOQ
BSR 4 7
8l OT 1T
BRING 7 TesT1eCFRaCFe Kos Ko ToeT2y
1 QAD LM T™M
MULT LMy Ko K
BSR z 7 R
ADD TieT2 T3
MULT 258 T3 HT o
suBT HT T2 TV
MUL T IR X0 X0 -
EQUAT HT T
MULT G K GK
suBsT F GK CF
ETPHI CF eTUsPHSs
MULT KeXOo -Us
MULT KaTRe KR
MULT TIeXOo X
TRANP TR, ZK o
MULT ZKs S 41
MUL T 41 TR S
MuULT H X HX
RINT T2 S P KRs K XoeX0Q =ljg=iJ HX Al
WRITE THE PRECEDING WERE Ps Ky Xs AND ~U AT INITIAL TIME,
MUL T PHeXQ4 1a
: EQUAT 19X04Z0sCD s
HEAD Z7BRING Z T aT1laCECFa Ko Ko TaT2s
IF TeTMIHEADZ24
LOAD LM
MULT LMy Ko K
MULT G K GK
sSUBT F GK CF
HEADR24BSR 77
IF T2+T1+HEAD 9
SUBT T2 To TUe .
ETPHI CF TUPHs
MULT PHeXOs X0Q 4
EQUAT T2+ To
MULT TIaXOs X4
MULT KeXOs -V
MULT KsTRs KR
MULT H X HX
JUXTR KR«RZ #*4 o
JUXTR %44 X *5
JUXTR *5 RZ 25
JUXTR ZS e HX 26
JUXTR Z6 RZ 27
JUXTR Z7 =U *7
Fig. 5
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RINT

T *7 ¢ INF

ADD Til.T2 I3
MULT «5+T3 HT
SUBT HTe T TU
ETPHI CFesTUWPHy
MUL T PH X0 X0 4
EQUAT HTs T
1E T1 Tl «HF ADI12HEAD 7
HEAD 9SUBT Ti1l,4 Ty TUs
EFTPH]I CF ¢ TUPH
MULT PHeXOs X0
EQUAT T1le To
BRING T TeT1eCFeCFs Ko Koy TyT2,
1E T IMaHEAD23
LOAD LM
MULT LM Ko K
MULT G K GK
SURT F GK CF
HEAD23BSR 7 7
ADD T1aTZ2 T3
MULT «S5+T3s HT
SUBT HTs To TUs
ETPHI CF sTUWPH
MULT PHeXOy - X0
EQUAT HTs Ty
1F T1eTLIHEADIZHEAD 7
HEAD128BRING TCF+CFy Ko Ky ToeT2y
SUBT T2, Ty TV,
ETPHI CF+TUsPH,
MULT PHsXOs 324
MULT T1 32 <X
MULT K32 =y
MULT KeTRY KR
MULT H X HX
RINT T2, KRe K Xe¢ X =Us=U HX AL
WRITE THE PRECEDING WERE Kas Xo AND =U AT FINAL TIME,
END
F [) &
-6 ~e76 400296875 [o] [e]
0] le Q o] o]
o] o] o] 10244 —-e 4
[¢] [o] Q Q o]
le o] o] [o] o]
o] 6] [o] 0 1a
o] 0 o] o]
o)
G 6 1
-2375 o] o] o] o]
Q
T1 1 1
175
T2 1 1
1245




F1l 6
-6

=T

—-276 200296875 o Q
0. le o] 0 Q
[0} Q Q 102 64 -l
o] 0] (] 0 o]
1s Q O ¥l Q
0] o] 0] -e2 o]
Q Q Q Fo e
-2 )
G1 &
-2¢375 6] [o] o) 0
o] ol
T3 1
=19,
20 1
20,
DT 1
225
TS 1
10,08
Q 6
99,
o] o] o] [o] [o]
o] 0 Q o X [aYalo 81
o] o] —«0001 o] [o]
(0] 00008 =~ 00008 fa) Q
o] 0] =-+00005 « 00005 o]
Q Q — 40001 fa fa)
« 0001
Q1 a
99 (o] [e} 0 0
Q o] 0 Q Q
o] 0] 0 [¢] o]
Q (0] 0 Q fo}
o] «0000S -+00005 (o] o]
Q Q -4 000085 «0000S Q
o} 0] 0 o} o]
o]
TQ 1
2 05
0s 1
S
ON 1
1025
ZO 1
Q
S 1
']
ON 1
le
D2 1
o] le Q
D3 1
Fig. 5




le

I=do

RZ

ZR

o Qg

O Q

o ao

o g o

[ele e/

[o e

Tw

2005

TL

RI
100,

ngoago
o
o
*
oqgo o
1y
a
Q
q
L |
o n
o
@]
L ]
nwmi
1 0 Q
O O
[e e No
a4 o «
Hiti
e Q|
0 1 ™
[0 [o} o
[\ o o
™ o ™
n . n
< N
~ ~
— ~
L] [ 3
[e e No e Nel

011092348

XX

le
le

TR

Q

Le

qQ

e qQqoOaQg

le

OoOQgoa

(oo Jeo e

X0

-+ 0938

-+ 0781

—e0625

-24 4
100,

=204

120,

=16,

Fig. 5

- 518 -




80, o (o]

(o] 100
100, 100, o fa
~20. =20 =20 o] (o}
[o]
TI 6 )
! 0 o o o
(o] o] le [¢] 0]
Qo 0 © —8 v
(8] 0 o] o] 0
Qo e 8 < ©
[¢] o] o] le 0
0 0. © © ©
le
=] 1 1
«25E4
2 1 1
24
TN 1 1
10
oT 1 1
ol
H 1 &
0 le —-¢00390625
o
TW 1 1
1,009
TW 1 1
« 005
TW 1 1
« 005
LM 1 1
.37
™ 1 1
.8
LM 1 1
0 37
L™ 1 1
e 37
LM 1. 1
042
LM 1 1
245
LM 1 1
248
LM 1 1
051
LM 1 1
55
LM 1 1
.6
L™ 1 1
265
LM 1 1

Fig. 5

- 519 -



7
1M

¢ 75
LM

8

¢85
LM

le
LM

1e
LM

le
LM

Fig. 5

- 520 -




ubh | b4 ———-
uiob g b1 4

2'L-

OlL-

ININOdNOD NIVO Pig

- 522 -




"UOIHIPUOD [DI{IUl MO| PuD |DUiWOU ybBiy 4o} 8pnilyY

—-00L

—02l

- 521 -




JNIL |

8 9 1% 4 0o _.

_ _ I _ e -
- N.l
lw_..l
I.V_..l

upob | b4 ———— 4 -

uob g b1y —— 480 -
l._VO.I
. by
— T — 1o

1IN3INOJNOD NIVO Ui &

- 523 -




BEGIN

LOAD Fe GeQloe TeZReONes DePCoel3e Jeo Xo HeT2 H1 X1 X2 X3 H2
MULT QleHlo 22
TRANP H1. 2Y
MULT 2y 22 Qs
SURT ZRs F o 1
TRANP F. FT
TRANP Ga GT
MULT ON GT C
MOLT G C 8
NORM Qo NQ
NQPM S NS
PSEUO NQ PQ RK
MUIL T PO NS M1
DECOM M1, SeSJERIPEs EsRK
MULT S Q Q
MULT SuU 5 =)
MULLT S C C
BLOT NQ.
SUXTC 1 Sa 24
JUXTC Q FT 3
JUXTR 2 3 EHa,
ETPHI PHs TsPHy
RICAT —QaPH+C s D4RCo 134+ Py KAl - —
RINT P+PER K¢ K
MULT G K Gk
SuBT F GK FC
ETPHI FC T P1
MULT ZR G GM
TRNS] Je KeONs XsPlsGMy HeT2, B S,
TRNSI Je KeONeX1 4Pl sGMsH20T2,
TRNSI Js KONIX2sP1lyGMs HsT2,
TRNS1 Je KON X3sP1aGMsH24T2,
END R _
F 8
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